BABU BANARASI DAS UNIVERSITY

School of Engineering

(School Code: 04)

Department of Computer Science & Engineering

University Branch Code: 42 M.Tech.- Computer Science and Engineering(Artificial Intelligence) Evaluation Scheme

SEMI	ESTER I								
se gory	Course Code	Code Title		ntact ours		Evaluation Scheme			Credits
Course Category			L	Т	P	CIA	ESE	Course Total	
F	MAI1101	Mathematical Foundations of Artificial Intelligence	4	0	0	40	60	100	4
С	MAI1102	Advanced Data Structures and Algorithms	4 0 0 40 60 100					100	4
F	MAI1103	Principles of Artificial Intelligence	4	0	0	40	60	100	4
GE		Generic Elective I	4	0	0	40	60	100	4
С	MAI1151	Advanced Data Structures and Algorithms Lab	0	0	4	40	60	100	2
C	MAI1152	Artificial Intelligence Lab	0	0	4	40	60	100	2
С	MAI1153	Seminar	0	0	4	100	-	100	2
		Total	16	0	12	340	360	700	22

SEM	ESTER II								
rse gory	Course Code	Code Title	_	ontac Hours	-	Evaluation Scheme			Credits
Course Category				T	P	CIA	ESE	Course Total	
С	MAI1201	Modern Machine Learning Architectures and Algorithms	4	0	0	40	60	100	4
С	MAI1202	Advanced Deep Learning and Generative Models	4	0	0	40	60	100	4
GE		Generic Elective II	4	0	0	40	60	100	4
GE		Generic Elective III	4	0	0	40	60	100	4
C	MAI1251	Machine Learning Lab	0	0	4	40	60	100	2
С	MAI1252	Deep Learning Lab	0	0	4	40	60	100	2
C	MAI1253	Seminar	0	0	4	100	-	100	2
		Total	16 0 12 340 360 700						22

SEMI	ESTER III								
gory		Code Title	Contact Hours			Evaluation Scheme			Credits
Course Category	Course Code		L	L T P			ESE	Course Total	
F	MAI1301	Research Methodology and IPR	4	0	0	40	60	100	4
GE		Generic Elective IV	4	0	0	40	60	100	4
С	MAI1351	Seminar	0	0	4	100	-	100	2
С	MAI1352	Dissertation I	2	-	-	400	-	400	10
Total	Total				4	580	120	700	20

SEMI	SEMESTER IV										
se ory	Course Code		1	onta lours		Evaluation Scheme (Credits		
Course Category	course coue	Code Title		T	P	CIA	ESE	Course Total			
С	MAI1451	Dissertation II	-	-	32	200	800	1000	16		
	Total 32 200 800 1000										

Legends:

L Number of Lecture Hours per week

T Number of Tutorial Hours per week

P Number of Practical Hours per week

CIA Continuous Internal Assessment

ESE End Semester Examination

Category of Courses:

F Foundation Course

C Core Course

GE Generic Elective

Generic Elective I

Course Code	Course Name	Credits
GE14211	Evolutionary Algorithms	4
GE14212	Computer Vision and Pattern Recognition	4
GE14213	Data Mining and Data Warehousing	4
GE14214	Natural Language Processing	4

Generic Elective II

Course Code	Course Name	Credits
GE14221	Blockchain Technologies	4
GE14222	Internet of Things	4
GE14223	Explainable AI	4
GE14224	Swarm Intelligence	4

Generic Elective III

Course Code	Course Name	Credits
GE14231	AI Policy and Governance	4
GE14232	Data Ethics in AI	4
GE14233	Responsible Artificial Intelligence	4
GE14234	AI for Cyber Security	4

Generic Elective IV

Course Code	Course Name	Credits
GE14241	Cloud Computing	4
GE14242	Distributed Systems	4
GE14243	Big Data Analytics	4
GE14244	Digital Twin Technology	4

Program	M. Tech (CSE-AI)										
Year	I	Sem	ester	I							
Course Name	Mathematical Foundations of Artif	icial Inte	lligence								
Code	MAI1101	MAI1101									
Course Type	Theory L T P Credit										
Prerequisite	Basic Knowledge of Linear Algebra, Calculus, Probability and Statistics and Discrete Mathematics	Algebra, Calculus, Probability and Statistics and Discrete 4 0 0 4									
Course Objectives	 To introduce core mathematical Artificial Intelligence. To develop a strong understand models such as neural networks To apply calculus for optimizat techniques such as gradient des To explore probability and statilearning from data. To understand basic elements of reasoning, and graph-based alg. 	ling of lir s and dim ion and t cent. stics for	near algel nensional raining o modeling	ora and its ity reduct f AI mod g uncertai	s role in AI ion. els through nty and						
Course Outcom	es										
CO1	Understand the fundamental conce and its applications in various field		notivation	n behind l	inear algebra						
CO2	Understand the foundational conce probability, and Bayes' theorem, as										
CO3	Understand the fundamental concertunctions in the context of stochast	pts of ran	dom var								
CO4	Understand the concept of periodic trigonometric series.			present the	em using						

Module	Course Contents	Contact Hrs.	Mapped CO
1	Linear Algebra Vectors and vector spaces, Matrices: operations, types, rank, inverse, and determinants, Eigenvalues, Eigenvectors, and diagonalization, Singular Value Decomposition (SVD)	9 Hours.	CO1
2	Probability and Statistics Introduction to Statistics and Probability, Probability and Conditioning, Conditional Probability, Baye's rule, Random variables, Expectation and Variance, Covariance, Discrete and Continuous Distributions-Uniform, Gaussian and Rayleigh distributions; Binomial, and Poisson distributions; Multivariate Gaussian distribution, Central Limit Theorem	9 Hours.	CO2
3	Stochastic Process: Random number, Distribution function, Interval estimation, Confidence intervals, Test of hypothesis, Markov process with special emphasis on Markov chain.	9 Hours.	CO3
4	Integral Transform: Fourier Series and Transform: Periodic functions, Trigonometric functions, Trigonometric Series,	9 Hours	CO4

Fourier series, Dirichlet conditions, Euler formula for	
Fourier coefficients, Even and Odd functions, Half range	
series expansion, Parseval's formula. Fourier transform,	
Properties of Fourier transform, Fourier sine and cosine	
transform, Convolution theorem, First Fourier transform.	

- 1. Kreyszig, E.(2011), Advanced engineering mathematics, Wiley India Pvt Ltd.
- 2. Grewal B.S.(2023), Higher Engineering Mathematics, Khanna Publishers
- 3. Ramana, B.V.(2010), Higher Engineering Mathematics, TMH, New Delhi.

- 1. https://onlinecourses.nptel.ac.in/noc25_cs136/preview
- 2. https://onlinecourses.nptel.ac.in/noc24 ma61/preview
- 3. https://nptel.ac.in/courses/111107137

	Course Articulation Matrix												
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	2	2	1	2	-	-	-	-	-	1	2	2
CO2	3	3	2	2	3	-	-	-	-	-	-	3	3
CO3	3	2	2	2	2	1	-	-	-	-	-	3	3
CO4	3	2	2	2	3	1	-	-	-	-	-	2	2

Program	M. Tech (CSE-AI)											
Year	I	Sem	ester	I								
Course Name	Advanced Data Structures and Algorithms	Advanced Data Structures and Algorithms										
Code	MAI1102											
Course Type	Theory L T P Credit											
Prerequisite	Basic Knowledge of Data Structures and Algorithms	4	0	0	4							
Course Objectives	 To deepen students' understand applications in solving advance To explore advanced algorithm and backtracking. To analyse and design efficient graphs, trees. To study and apply advanced designity Queue, hash tables, and 	d compuic technic algorithmata struct	tational p ques such ms for pr tures incl	oroblems. n as dividente oblems in	e and conquer							
Course Outcom	es											
CO1	Analyse the time and space comple efficiency.	exity of a	lgorithms	s and eval	uate their							
CO2	Learning simple and efficient implearrays and tree structures.	ementatio	ons of pri	ority que	ues using							
CO3	Studying AVL Trees, including the used to maintain balance after inser	_			n techniques							
CO4	Apply graph algorithms to model a scheduling, networking, and route			ld probler	ns such as							

Module	Course Contents	Contact Hrs.	Mapped CO
1	Role of algorithms in computing & complexity analysis: Algorithms –Time and Space complexity of algorithms- Asymptotic analysis-Average and worst-case analysis- Asymptotic notation-Importance of efficient algorithms- Program performance measurement - Recurrences: The Substitution Method – The Recursion-Tree Method- Masters Theorem method	9 Hours.	CO1
2	Priority Queues (Heaps) – Model, Simple implementations, Binary Heap: Structure Property, Heap Order Property, Basic Heap Operations: insert, delete, Percolate down, Other Heap Operations. Binomial Queues: Binomial Queue Structure, Binomial Queue Operations, Implementation of Binomial Queue, Priority Queues in the Standard Library.	9 Hours.	CO2
3	Trees –Traversal, AVL: Single Rotation, Double Rotation, B-Trees. Multi-way Search Trees – 2-3 Trees: Searching for an Element in a 2-3 Tree, Inserting a New Element in a 2-3 Tree, Deleting an Element from a 2-3 Tree. Red-Black Trees – Properties of red-black trees, Rotations, Insertion, Deletion.	9 Hours.	CO3
4	Hashing – General Idea, Hash Function, Separate Chaining, Hash Tables without linked lists: Linear Probing, Quadratic	9 Hours	CO4

Probing, Double Hashing, Rehashing, Hash Tables in the	
Standard Library, Universal Hashing, Extendible Hashing.	
Graphs Algorithms – Elementary Graph Algorithms:	
Topological sort, Single Source Shortest Path Algorithms:	
Dijkstra's, Bellman-Ford, All-Pairs Shortest Paths: Floyd-	
Warshall's Algorithm.	

- 1. Adam Drozdex, "Data Structures and algorithms in C++", Cengage Learning, 4th Edition, 2013.
- 2. T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, "Introduction to Algorithms", Prentice Hall of India, 3rd Edition, 2012.
- 3. Mark Allen Weiss, "Data Structures and Algorithms in C++", Pearson Education, 3rd Edition, 2009.

- 1. http://ocw.mit.edu/6-851S12 (MITOPENCOURSEWARE, Massachusetts Institute of Technology)
- 2. https://nptel.ac.in/courses/106/106/106106133

	Course Articulation Matrix												
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	2	2	1	2	1	-	-	-	-	1	2	2
CO2	3	3	2	2	3	-	-	-	-	-	-	3	3
CO3	3	2	2	2	2	1	-	-	-	-	-	3	3
CO4	3	2	2	2	3	ı	ı	-	ı	-	ı	2	2

Program	M. Tech (CSE-AI)											
Year	I	Sem	ester	I								
Course Name	Principles of Artificial Intelligence											
Code	MAI1103											
Course Type	Theory L T P Credit											
Prerequisite	Basic Knowledge of AI and Programming Concepts.	4	0	0	4							
Course Objectives	Intelligence concepts, including and the architecture of intellige 2. To develop critical analytical as search strategies, constraint sati approaches to AI problem form 3. To strengthen logical reasoning through the design and implement structured knowledge represent 4. To enable the application of adalanguage processing, reinforcer	search strategies, constraint satisfaction techniques, and game-theoretic approaches to AI problem formulations. 3. To strengthen logical reasoning and decision-making capabilities through the design and implementation of expert systems using structured knowledge representation and inference mechanisms. 4. To enable the application of advanced AI techniques such as natural language processing, reinforcement learning, and fuzzy logic for intelligent data analysis, autonomous decision-making and managing										
Course Outcom	es											
CO1	Describe the core principles, historincluding intelligent agents and the			tificial In	telligence,							
CO2	Apply uninformed and informed se constraint satisfaction methods to s	olve stru	ctured A	I problem	s.							
CO3	Analyse and construct logical know propositional and first-order logic t inference.	o perform	n intellig	ent reasoi	ning and							
CO4	Design intelligent systems using ad agent systems, reasoning under uncase-based reasoning to address con applications in robotics, expert s	ertainty, mplex rea	probabil al-world	istic planı challenge	ning, and s, focusing							

Module	Course Contents	Contact Hrs.	Mapped CO
1	Foundations of Artificial Intelligence: Definition, history, and evolution of AI, Types of AI: Narrow, General, Super AI, Turing Test, AI applications: NLP, computer vision, robotics, expert systems, Agents and Environments, Intelligent agent design: PEAS (Performance measure, Environment, Actuators, Sensors).	9 Hours.	CO1
2	Problem Solving, Search, and Game Playing: Problem formulation and state space, Uninformed search: BFS, DFS, Uniform Cost Search, Informed search: Greedy, Best-First, A* Algorithm, Heuristics: design and evaluation, Local search: Hill Climbing, Simulated Annealing, Adversarial	9 Hours.	CO2

	search: Game trees, Min-max, Alpha-Beta Pruning,		
	Constraint Satisfaction Problems (CSPs)		
3	Knowledge Representation, Reasoning, and Planning: Approaches to knowledge representation, Propositional and First-Order Predicate Logic, Syntax, semantics, and inference techniques, Rule-based systems and expert systems, Semantic networks, frames, and ontologies, Probabilistic reasoning and Bayesian Networks, Classical and partial-order planning, Hierarchical Task Network (HTN) planning, Conditional and contingency planning, Decision theory, utility theory, Markov Decision Processes (MDPs)	9 Hours.	CO3
4	Advanced AI Techniques and Applications: Reasoning Under Uncertainty: Non-monotonic reasoning, Default logic and truth maintenance systems, Probabilistic logic and inference, Planning Under Uncertainty and Dynamics: Stochastic and probabilistic planning, AI in Real-World Applications (Rule-based and Symbolic AI focused): AI in robotics: path planning, environment modeling, Expert systems in diagnostics (healthcare, automotive, legal domains), Symbolic AI in education and intelligent tutoring systems, Human-AI interaction and ethical reasoning in AI systems.	9 Hours	CO4

- 1. Stuart Russell & Peter Norvig, *Artificial Intelligence: A Modern Approach*, 4th Edition, Pearson Education: The most comprehensive and authoritative text on AI, covering search, logic, learning, planning, and real-world applications.
- 2. Elaine Rich, Kevin Knight & Shivashankar B. Nair, *Artificial Intelligence*, 3rd Edition, McGraw Hill: A foundational book offering clear insights into AI principles, expert systems, and problem-solving techniques.
- 3. Tom M. Mitchell, *Machine Learning*, McGraw Hill: A key resource for understanding the basics of machine learning algorithms and their mathematical foundations.

- 1. https://nptel.ac.in/courses/112103280
- 2. https://onlinecourses.nptel.ac.in/noc22 cs56/preview

	Course Articulation Matrix												
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	2	2	1	2	-	1	-	-	-	-	2	2
CO2	3	3	3	2	2	-	-	-	1	-	1	3	2
CO3	3	3	3	2	3	1	-	-	-	-	-	3	3
CO4	3	3	3	3	3	2	2	2	1	-	2	3	3

Drogram	M. Tech (CSE-AI)								
Program									
Year	I	Seme							
Course Name	Advanced Data Structures and Algorithms Lab								
Code	MAI1151								
Course Type	Practical	L	T	P	Credit				
Pre-Requisite	Basic Knowledge of computer fundamentals and Programming 0 0 4 2 Concepts.								
Course Objectives	 To learn the usage of heap struct To understand the usage of graph To understand the problems such activity selection and Huffman 	 To understand the usage of graph structures and spanning trees To understand the problems such as matrix chain multiplication, activity selection and Huffman coding To understand the necessary mathematical abstraction to solve 							
Course Outcom	es								
CO1	Design and implement basic and ac	dvance	d data str	uctures e	xtensively				
CO2	Understand and implement Fibona with improved amortized complexi		ps for ac	lvanced h	neap operations				
CO3	Design algorithms using graph stru	ctures							
CO4	Develop efficient solutions for the algorithms.	Activit	y Selecti	on proble	em using greedy				

S. No.	List of Experiments	Mapped CO
1.	Implementation of Priority Queue	CO1
2.	Implementation of Binomial Queue	CO1
3.	Implementation of a AVL tree	CO1
4.	Implementation of Red-Black Tree	CO2
5.	Implementation of Multi-way Search	CO2
6.	Implementation of Fibonacci Heap	CO2
7.	Implementation of Tree Traversal	CO3
8.	Implementation of Graph Traversal	CO3
9.	Implementation of Shortest Path Algorithms(Dijkstra's algorithm)	CO3
10.	Implementation of All pairs shortest path	CO4

- Online Resources
 1. http://www.coursera.org/specializations/data-structures-algorithms
 2. https://nptel.ac.in/courses/106102064

	Course Articulation Matrix												
PO- PS O	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	2	3	2	3	-	-	-	-	-	-	3	2
CO2	3	2	3	2	3	-	-	-	-	-	-	3	3
CO3	3	3	3	2	3	-	-	-	-	-	-	3	3
CO4	3	2	3	2	3	-	-	-	-	-	-	3	2

Program	M. Tech (CSE-AI)										
Year	I	Semeste	er	I							
Course Name	Artificial Intelligence Lab										
Code	MAI1152										
Course Type	Practical	L	T	P	Credit						
Pre-Requisite	Basic knowledge of programming, algorithms, and mathematics (linear algebra, probability, logic).	0	0	4	2						
Course Objectives	 Implement fundamental AI algoriticiples. Develop problem-solving capallogic, and constraint satisfactions. Apply machine learning algorit. Demonstrate the ability to design methods to data-driven applicate. 	oilities us n. hms to re gn intellig	sing techi	niques suo	ch as search,						
Course Outcom	es										
CO1	Implement AI techniques such as serepresentation.	earch alg	orithms a	and know	ledge						
CO2	Develop intelligent agents using ru	le-based	and logic	-based sy	stems						
CO3	Apply fundamental machine learning unsupervised learning.										
CO4	Use Python libraries to build and educates.	valuate A	I models	for real-	world						

S. No.	List of Experiments	Mapped CO
1		CO1
1	Implement uninformed search algorithms: BFS, DFS.	
2	Implement informed search algorithms: A*, Greedy Search.	CO2
3	Solve a constraint satisfaction problem (e.g., 8-Queens) using backtracking.	CO2
4	Develop a simple expert system using forward chaining and backward	CO2
5	Represent knowledge using propositional and first-order logic in Python.	CO2
6	Build a decision tree classifier using a dataset.	CO3
7	Implement a k-Nearest Neighbours (k-NN) algorithm from scratch.	CO4
8	Train and evaluate a Naïve Bayes classifier on textual data.	CO4
9	Use scikit-learn to apply Logistic Regression supervised learning	CO3
	algorithms.	
10	Apply k-means clustering algorithmon a sample dataset using Python.	CO3

Online Resources

1. https://nptel.ac.in/courses/106105077

2. https://scikit-learn.org/stable/

	Course Articulation Matrix												
PO- PS O	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	3	3	2	2	-	-	-	-	-	-	3	2
CO2	3	3	3	2	3	-	-	-	-	-	-	3	3
CO3	3	3	3	3	3	-	-	-	-	-	-	3	3
CO4	3	3	3	3	3	-	-	-	-	-	-	3	3

Program	M. Tech (CSE-AI)								
Year	I	Sem	ester	II					
Course Name	Modern Machine Learning Archite	e Learning Architectures and Algorithms							
Code	MAI1201								
Course Type	Theory	L	T	P	Credit				
Prerequisite	Basic Knowledge of computer fundamentals and Programming Concepts.	<u> </u>							
Course Outcom	 To be able to define ML Model/I To be able to understand classific Reduction To be able to implement probability algorithm. To be able to understand and implement probability and implement probability. 	cation alg	gorithm a	nd Dimens	eation				
CO1	Understand and define simple ML	Model							
CO2	Analysis of classification algorithm	and red	uce dime	nsions of da	ata.				
CO3	Develop Probabilistic algorithm.								
CO4	Apply Reinforcement learning (RL)							

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction: Introduction to Machine Learning: Introduction. Different types of learning, Hypothesis space and inductive bias. Training and test sets, cross validation, Concept of over fitting, under fitting, Bias and Variance. Linear Regression: Introduction, Linear regression, Simple and Multiple Linear regression, Polynomial regression, evaluating regression fit.	9 Hours.	CO1
2	Decision tree learning: Introduction, Decision tree representation, appropriate problems for decision tree learning, the basic decision tree algorithm, hypothesis space search in decision tree learning, issues in decision tree learning, Ensamble Learning, Random Forest Instance based Learning: K nearest neighbour Algorithm. Curse of Dimensionality, Feature Selection: univariate, multivariate feature selection approach, Feature reduction: Principal Component Analysis, Independent Component Analysis(ICA): Introduction, Cocktail Party Problem in ICA, Singular Value decomposition(SVD) Recommender System: Content based system, Collaborative filtering based System	9 Hours.	CO2
3	Probability and Bayes Learning: Bayesian Learning, Naïve Bayes, Python exercise on Naïve Bayes, Logistic Regression.	9 Hours.	CO3

	Support Vector Machine: Introduction, the Dual formulation,		
	Maximum margin with noise, nonlinear		
	SVM and Kernel function, solution to dual problem.		
	Reinforcement learning (RL): Introduction, Agent and		
	Environment, Actions and States, Rewards and Penalties,		
4	Learning, Policy, Trial and Error, Goal.	9 Hours	CO4
	Concepts of Value Function, Q-function, Model-Free RL vs.		
	Model-Based RL		

- 1. Ethem Alpaydin,"Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition 2014
- 2. Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar "Foundations of Machine Learning", MIT Press, 2012.

- 1. https://nptel.ac.in/courses/106106139
- 2. https://nptel.ac.in/courses/106105152

	Course Articulation Matrix												
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	2	3	2	2	ı	ı	ı	ı	-	ı	3	2
CO2	3	3	3	3	3	-	-	-	-	-	-	3	3
CO3	3	3	3	3	3	-	-	-	-	-	-	3	3
CO4	3	3	3	3	3	ı	ı	ı	ı	-	ı	3	3

Program	M. Tech (CSE-AI)									
Year	I	Sem	ester	II						
Course Name	Advanced Deep Learning and Generative Models									
Code	MAI1202	MAI1202								
Course Type	Theory	Theory L T P Credit								
Prerequisite	Concept of ANN, Deep Learning and Machine Learning	4								
Course Objectives	 To introduce the concepts of Deep learning To solve real-world applications using Deep learning Providing insight into recent Deep Learning architectures To learn different knowledge representation techniques in Deep Learning 									
Course Outcom	es									
CO1	To understand basic concept of AN	N and D	eep Lear	ning						
CO2	Know the concepts and techniques abilities in designing and implement real-world and engineering problem	nting Dec								
СО3	To understand a wide variety of learning representation techniques in Deep Learning visualize Convolutional Neural Network for real-world Applications and Other Neural Networks									
CO4	To distinguish different types of Ad	dvanced	Neural N	letworks						

Module	Course Contents	Contact Hrs.	Mapped CO
1	Neural Networks-I (Introduction & Architecture): Neural Networks-I (Introduction & Architecture): Neuron, Nerve structure and synapse, Artificial Neuron and its model Activation functions, Sigmoid, Tanh and Relu Functions — Softmax The Neuron Expressing Linear Perceptrons as Neurons — Feed-Forward Neural Networks, Convergence rule, Auto-associative and Hetro-Associative memory.		CO1
2	Neural Networks-II (Backpropagation networks): Architecture: perceptron Model, Solution, Single Layer Artificial Neural Network, Multilayer Perception Model; Backpropagation Learning Methods, Effect of Learning Rule Co-Efficient; Backpropagation Algorithm, Factors Affecting Backpropagation Training and Applications.	9 Hours.	CO2
3	Deep Network : Learning Platforms. A Probabilistic Theory of Deep Learning, Backpropagation and regularization, normalization, Stochastic Gradient Descent (SGD), Convolution Network Architecture, Deep Boltzmann Machine, Hidden Markov model, Deep Networks Vs. Shallow Networks Convolutional Networks- Auto Encoder and Semi-Supervised Learning		CO3

4	1	Advanced Neural Networks: Population Based Methods,		
		Spatial Transformer Networks- Recurrent networks, LSTM		
		Recurrent Neural Network Language Models, Generator,	0 Цонта	CO4
		Discriminator, Training, GAN variants; Autoencoder:	9 Hours	CO4
		Architecture, Denoising and Sparcity; DALL-E, DALL-E 2,		
		ImageNet and AlexNet Structure		

- Deep Learning: A Practitioner's Approach, Josh Patterson, Adam Gibson, O'Reilly Media, 2017
- 2. N. P. Padhy,"Artificial Intelligence and Intelligent Systems" Oxford University Press. Reference Books:
- 3. Stephen Marsland, —Machine Learning: An Algorithmic Perspective, CRC Press, 2009

- 1. https://onlinecourses.nptel.ac.in/noc20 cs62/preview
- 2. https://nptel.ac.in/courses/106106201
- 3. https://onlinecourses.nptel.ac.in/noc25 cs93/preview

	Course Articulation Matrix												
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	2	3	2	2	-	-	-	-	-	-	3	2
CO2	3	3	3	3	3	-	-	-	1	-	-	3	3
CO3	3	3	3	3	3	-	-	-	1	-	-	3	3
CO4	3	3	3	2	2	-	-	-	1	-	-	3	3

Program	M. Tech (CSE-AI)								
Year	I	Semeste	er	II					
Course Name	Machine Learning Lab								
Code	MAI1251								
Course Type	Practical	L	T	P	Credit				
Pre-Requisite	Basic knowledge of Python 0 0 4 2 programming, and mathematics (linear algebra, probability, logic).								
Course Objectives	 Understand and apply fundame regression, classification, cluste Develop proficiency in using property python, scikit-learn, Tensor Flo Preprocess and analyze data efficienting models. Evaluate and compare model property and techniques like cross-validations. 	ering, and rogramm ow, or single fectively erforman	l dimens ing tools nilar for to prepar	ionality re and fram machine l re it for m	eduction. eworks like earning. achine				
Course Outcom	es								
CO1	To learn the basic concepts of maclearning.		C	• 1					
CO2	To design and analyze various mad with a modern outlook focusing on			orithms ar	nd techniques				
CO3	Explore supervised and unsupervis learning.	ed learni	ng parad	igms of m	nachine				
CO4	To Outline predictions using mach	ine learni	ng algor	ithms.					

S. No.	List of Experiments	Mapped CO
1	Creation and Loading different types of datasets in Python using the required libraries. (a) Understanding and using Jupyter Notebook and Colab Notebook (b) Creation using pandas: Loading CSV dataset files using Pandas (c) Loading datasets using sklearn	CO1
2	Write a python program to (a) compute Mean, Median, Mode, Variance, Standard Deviation using Datasets (b) Demonstrate various data pre-processing techniques for a given dataset.	CO2
3	Implement Dimensionality reduction using Principle component Analysis method on a dataset iris	CO2
4	Write a program to demonstrate the working of the (a) Decision tree algorithm by considering a dataset. (b) Random Forest to predict the output class.	CO2

5	Write a Python program to implement Simple Linear Regression and plot the graph using Matplotlib and plot confusion matrix.	CO2
6	Build KNN Classification model for a given dataset. Vary the number of k values as follows and compare the results: 1,3,5,7,11	CO3
7	Implement Support Vector Machine for a dataset and compare the accuracy by applying the following kernel functions: i. Linear ii. Polynomial iii. RBF	CO4
8	Write a python program to implement K-Means clustering Algorithm. Vary the number of k values as follows and compare the results	CO4
9	implement a Naive Bayes classifier using Python	CO3
10	Implement any simple Reinforcement Algorithm.	CO3

- https://nptel.ac.in/courses/106105077
 https://scikit-learn.org/stable/

	Course Articulation Matrix												
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	2	2	2	2	-	-	-	-	-	-	3	2
CO2	3	3	3	3	3	-	-	-	-	-	-	3	3
CO3	3	3	3	3	3	-	-	-	-	-	-	3	3
CO4	3	3	3	3	3	-	-	-	-	-	-	3	3

Program	M. Tech (CSE-AI)									
Year	I	Sem	ester	II						
Course Name	Deep Leaning Lab									
Code	MAI1252									
Course Type	Practical	Practical L T P Credit								
Prerequisite	Knowledge of ANN, Deep Leaning and Machine Learning Programming	0	0	4	2					
Course Objectives	need of Deep Learning techniques: 2. Develop analytical ability on diff. 3. To understand, learn and design									
Course Outcom	es									
CO1	Understand and basic concept of gr program using Numpy and Pandas	aph repr	esentatio	n of the D	ataset					
CO2	Analysis of conditions in a problem	n and imp	olement i	t in a prog	gram.					
CO3	To understand the concept of CNN	, RNN, C	GANs, A	uto-encod	ers					
CO4	Execute your task in the laboratory observation notebook, and get certi									

S. No.	List of Experiments	Mapped CO
1	Design a single unit perceptron for classification of a linearly separable binary dataset without using pre-defined models. Use the Perceptron() from sklearn.	CO1
2	Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets. Vary the activation functions used and compare the results.	CO1
3	Design and implement an Image classification model to classify a dataset of images using Deep Feed Forward NN. Record the accuracy corresponding to the number of epochs. Use the MNIST, CIFAR-10 datasets.	CO2
4	Design and implement a CNN model (with 2 layers of convolutions) to classify multi category image datasets. Record the accuracy corresponding to the number of epochs. Use the MNIST, CIFAR-10 datasets. computer vision problems Applying the Convolution Neural Network on computer vision problems	CO2
5	Implement the standard VGG-16 & 19 CNN architecture model to classify multi category image dataset and check the accuracy.	CO3
6	Use the concept of Data Augmentation to increase the data size from a single image.	CO3
7	Implement RNN for sentiment analysis on movie reviews.	CO3

8	Implement Bidirectional LSTM for sentiment analysis on movie reviews.	CO3
9	Implement Generative Adversarial Networks to generate realistic Images. Use MNIST, Fashion MNIST or any human face datasets.	CO3
10	Implement Auto encoders for image denoising on MNIST, Fashion MNIST or any suitable dataset	CO4

- https://onlinecourses.nptel.ac.in/noc24_cs59/preview
 https://archive.nptel.ac.in/courses/106/106/106106184/

	Course Articulation Matrix												
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	2	3	2	3	-	-	-	-	-	-	3	2
CO2	3	3	3	3	3	-	-	-	-	-	-	3	3
CO3	3	3	3	3	3	-	-	-	-	-	-	3	3
CO4	2	2	2	2	2	3	-	2	2	2	2	2	2

Program	M. Tech (CSE-AI)									
Year	II	Sem	ester	III						
Course Name	Research Methodology and IPR									
Code	MAI1301									
Course Type	Theory	L	T	P	Credit					
Prerequisite	Basic Knowledge of Statistics 4 0 0 4 4 and Mathematics									
Course Objectives	 To understand the basic concepts and significance of research. To equip students with skills to design and implement research studies. To develop the ability to analyse and interpret data. To provide an overview of various types of IPR. To educate students on the legal aspects and procedures of IPR protection. 									
Course Outcom	es									
CO1	Understand the basic principles, pu scientific research.	•	•		C					
CO2	Understand basic of Correlation, R and Sampling Methods			•						
CO3	Apply effective strategies for conductive relevant to their research area.	ucting an	d analysi	ng literat	ure studies					
CO4	Explain the concept, significance, a Intellectual Property Rights (IPR)		ification	of various	s forms of					

Module	Course Contents	Contact Hrs.	Mapped CO
1	Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem, Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations.	9 Hours.	CO1
2	Correlation-Scatter diagram, Karl Pearson's coefficient of correlation, spearman's rank correlation coefficient. Regression-Finding regression equations, regression coefficients, prediction based on regression equations. Binomial distributions, Poisson distribution, Normal distribution and their applications. Sampling methods: Population and sample, Probability and non-probability sampling methods, determination of sample size	9 Hours.	CO2
3	Effective literature studies approaches, analysis Plagiarism, Research ethics, Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.	9 Hours.	CO3
4	Introduction to Intellectual Property Rights (IPR): Concept of Property: Understanding the nature of tangible and intangible property, including intellectual property. Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and	9 Hours	CO4

Development: technological research, innovation, patenting,	
development. India's National IPR Policy: Understanding the	
overall policy framework for IPR in India.	
International Scenario: International cooperation on	
Intellectual Property, Procedure for grants of patents,	
Patenting under PCT.	
India's National IPR Policy: Understanding the overall policy	
framework for IPR in India.	

- 1. Research Methodology by C.R.KOTHARI, New Age.
- 2. Business Statistics, Sharma J K, Pearson Education 2nd Edition.
- 3. Research Methodology, 2nd edition, Pearson Education, Ranjit Kumar (2009)

- 1. https://onlinecourses.swayam2.ac.in/ntr24_ed08/preview
- 2. https://onlinecourses.nptel.ac.in/noc23 ge36/preview
- 3. https://archive.nptel.ac.in/courses/110/105/110105139/

	Course Articulation Matrix												
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	2	2	2	1	-	-	-	-	2	2	2	2
CO2	3	3	2	3	3	-	-	-	-	-	-	2	2
CO3	3	2	3	2	2	-	-	-	2	3	3	3	2
CO4	2	1	2	1	1	-	2	2	1	2	2	2	2

Program	M. Tech (CSE-AI)									
Year	I	Sem	ester	I						
Course Name	Evolutionary Algorithms									
Code	GE14211									
Course Type	GE	L	Т	P	Credit					
Prerequisite	Prior knowledge of programming, mathematics, algorithms, optimization, and basic AI/ML is required.	Prior knowledge of programming, mathematics, algorithms, optimization, and 4 0 0 4								
Course Objectives	Genetic Algorithms and Evolut 2. Develop and implement e robustness with computational and in Enhance the efficiency of evolution and evolution problems of optimization problems 4. Explore novel approaches to see the efficiency of evolution problems and evolution problems.	 Conduct a comprehensive review of recent developments and trends in Genetic Algorithms and Evolutionary Computing. Develop and implement evolutionary algorithms that balance robustness with computational simplicity and ease of programming. Enhance the efficiency of evolutionary algorithms for solving a wide range of optimization problems in practical applications. Explore novel approaches to solving complex optimization problems without relying on intricate mathematical models or formulations. 								
Course Outcom	es									
CO1	Explain the fundamental principles demonstrate their use in solving con	mplex op	timizatio	n probler	ns.					
CO2	Analyse common design and imple Algorithms and propose effective s	mentatio olutions.	n challen	iges in Ge	enetic					
CO3	Illustrate the structure and role of E solving real-world optimization tas		al Evolut	ion algor	ithms in					
CO4	Describe key concepts of Swarm Ir applications in optimization.	ntelligeno	e technic	ques and t	heir					

Module	Course Contents	Contact Hrs.	Mapped CO
1	Evolutionary Algorithms for Complex Optimization: Introduction, Natural evolution as inspiration for computation, Fundamentals of population-based optimization, Introduction to EA techniques and workflows, Evolutionary methods in solving AI problems, Different forms and variants of EAs, Self-adaptive optimization techniques, Mutation-driven evolutionary modelling, Components and flow of an evolutionary process, Comparing stochastic and deterministic search, Advantages in flexibility and complex problem-solving.	9 Hours.	CO1
2	Introduction to Genetic Algorithms: Basic Structure of GA, Genetic Operators, GA Cycle, Elitism and generational gap, Convergence analysis, Fitness Landscape and Schema Theory, Adaptive and self-adaptive strategies, Types of Genetic Algorithms, Constraints Handling, Hybrid Genetic	9 Hours.	CO2

	Algorithms, Multi-Objective Genetic Algorithms (MOGA), Dynamic/Adaptive Gas, Real-World Applications of GA.		
3	Introduction to Genetic Programming: Fitness evaluation, sub-tree crossover, mutation, Selection mechanisms, Bloat control, Symbolic regression, Automatically Defined Functions, GP in classification and ML, Multi-objective GP, Evolving neural networks using GP. Introduction to Differential Evolution: Vector-based representation, Mutation strategy, Crossover and scaling factor, Selection mechanism, Control parameter tuning, DE variants and convergence behaviour, Self-adaptive DE, Hybrid DE, Multi-objective DE, Constraint handling in DE, Parallel/Distributed DE.	9 Hours.	CO3
4	Bio-Inspired Swarm Algorithms and Multi-Objective Optimization: Introduction to Swarm Intelligence, decentralization, self-organization, Introduction to multi-objective problems, Pareto optimality and dominance, Objective space vs. decision space, Performance metrics, Swarm Algorithms Methods: PSO, ACO, ABC, WOA, GWA. NSGA-II, SPEA2, MOEA/D. Dynamic MOO, Preference-based optimization, Decision-making from Pareto fronts.	9 Hours	CO4

- 1. Goldberg, D. E., "Genetic Algorithms in Search, Optimization, and Machine Learning", Addison-Wesley,1989
- 2. Fogel, D. B., "Evolutionary Computation: Principles and Practice for Signal Processing", Wiley-IEEE Press, 2006
- 3. Eiben, A. E., & Smith, J. E., "Introduction to Evolutionary Computing", (2nd ed.). Springer, 2015

Online Resources

1. https://archive.nptel.ac.in/courses/112/103/112103301/

	Course Articulation Matrix												
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	2	3	2	3	-	-	-	-	-	-	3	2
CO2	3	3	3	3	3	-	-	-	-	2	-	3	3
CO3	3	3	3	3	3	-	-	-	-	-	-	3	3
CO4	3	2	3	3	3	-	-	-	-	-	-	3	3

Program	M. Tech (CSE-AI)									
Year	I	Semester I								
Course Name	Computer Vision and Pattern Recog	gnition								
Code	GE14212									
Course Type	GE L T P Credit									
Prerequisite	Prior knowledge of programming, mathematics, algorithms, optimization, and basic AI/ML is required.									
Course Objectives	processing on digital images 2. Develop analytical ability on high-level understanding from c 3. Easy mapping and respective image processing 4. Computer vision tasks include	 Develop analytical ability on how computers can be made for gaining high-level understanding from digital images or videos Easy mapping and respective conversion of real world problem to 								
Course Outcom	es									
CO1	To have a strong foundation on processing on digital images	computer	r algoritl	nms to po	erform image					
CO2	Develop analytical ability on how of level understanding from digital im	ages or v	ideos							
CO3	Easy mapping and respective conv processing	version o	f real w	orld prob	lem to image					
CO4	Computer vision tasks include methand understanding digital images.	nods for	acquiring	g, process	ing, analysing					

Module	Course Contents	Contact Hrs.	Mapped CO
1	Principles of Pattern Recognition: Introduction and Uses, Basic Mathematics of computer vision ,Classification and Bayes Decision Rule, Clustering vs. Classification, Relevant Basics of Linear Algebra, Vector Spaces, Eigen Value and Eigen Vectors, Vector Spaces Rank of Matrix and SVD, Types of Errors, Examples of Bayes Decision Rule.	9 Hours.	CO1
2	Normal Distribution and Parameter Estimation, Training Set, Test Set, Standardization, Normalization, Clustering and Metric Space, Normal Distribution and Decision Boundaries Normal Distribution and Decision Boundaries II, Bayes Theorem, Linear Discriminate Function and Perceptron, Perceptron Learning and Decision Boundaries, Linear and Non-Linear Decision Boundaries-NN Classifier	9 Hours.	CO2
3	Principal Component Analysis (PCA), Fisher's LDA, Gaussian Mixture Model(GMM), Basics of Clustering, Similarity/Dissimilarity Measures, Clustering Criteria's-Means Algorithm and Hierarchical Clustering, K-Medoids and DBSCAN, Feature Selection: Problem statement and	9 Hours.	СОЗ

	Uses, Branch and Bound Algorithm, Sequential Forward and		
	Backward Selection.		
	Cauchy Schwartz Inequality, Probabilistic Separability		
	Based, Interclass Distance Based, Principal Components		
	Comparison Between Performance of Classifiers, Basics of	1	
4	Statistics, Covariance, and their Properties, Data	9 Hours	CO4
	Condensation, Feature Clustering, Data Visualization,		
	Probability Density Estimation, Visualization and		
	Aggregation.		

- 1. Robert Haralick and Linda Shapiro, "Computer and Robot Vision", Vol I, II, Addison Wesley, 1993
- 2. David A. Forsyth, Jean Ponce, "Computer Vision: A Modern Approach" Pearson
- 3. Milan Sonka, Vaclav Hlavac, Roger Boyle, "Image Processing, Analysis, and Machine Vision" Thomson Learning.

- 1. https://nptel.ac.in/courses
- 2. https://www.cse.iitb.ac.in

	Course Articulation Matrix												
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	2	3	2	3	-	-	-	-	-	-	3	2
CO2	3	3	3	3	3	-	-	-	-	2	-	3	3
CO3	3	3	3	2	3	1	-	-	-	-	-	3	3
CO4	3	3	3	3	3	-	-	-	1	-	-	3	3

Program	M. Tech(CSE-AI)									
Year	I	Sem	ester	I						
Course Name	DATA MINING AND DATA WAREHOUSING									
Code	GE14213	E14213								
Course Type	GE	L	T	P	Credit					
	To understand mathematics and	_	_		_					
Prerequisite	statistics, programming skills and	4	0	0	4					
	Data Warehousing Concepts									
Course Objectives	 To characterize the kinds of patter association rule mining. To implement classification tech To analyse various clustering tech To get exposed to the concepts of implementation. 	niques o	n large da in real w	atasets. orld appli	cations.					
Course Outcom	es									
CO1	Identify data mining techniques in	building	intelliger	nt model.						
CO2	Illustrate association mining techni	ques on 1	transactio	onal datab	ases.					
CO3	Apply classification and clustering	techniqu	es in rea	l world ap	plications.					
CO4	Design, create and maintain data w	arehouse	es.							

Module	Course Contents	Contact Hrs.	Mapped CO
1	DATA MINING & ASSOCIATION RULE MINING Data Mining— Concepts, Data Discretization and Concept Hierarchy Generation Introduction to Association rules — Association Rule Mining — Mining Frequent Itemsets with and without Candidate Generation —Classification versus Prediction — Data Preparation for Classification and Prediction	9 Hours.	CO1
2	CLASSIFICATION AND PREDICTION TECHNIQUES Classification by Decision Tree – Bayesian Classification – Rule Based Classification – Bayesian Belief Networks – Classification by Backpropagation – Support Vector Machines – K-Nearest Neighbor Algorithm – Linear Regression, Nonlinear Regression	9 Hours.	CO2
3	CLUSTERING TECHNIQUES Cluster Analysis – Partitioning Methods: k-Means and k-Medoids – Hierarchical Methods: Agglomerative and Divisive –Model Based Clustering Methods: Fuzzy clusters and Expectation-Maximization Algorithm	9 Hours.	CO3
4	DATA WAREHOUSE Need for Data Warehouse – Database versus Data Warehouse – Multidimensional Data Model –	9 Hours	CO4

Schemas for Multidimensional Databases - OLAP	
operations – OLAP versus OLTP – Data	
Warehouse Architecture – Extraction, Transformation and	
Loading (ETL)	

- 1. Jiawei Han, Micheline Kamber, "Data Mining Concepts and Techniques", Third Edition, Elsevier, 2012.
- 2. K. P. Soman, Shyam Diwakar, V. Ajay, "Insight into Data mining Theory and Practice", Easter Economy Edition, Prentice Hall of India, 2009.
- 3. Data Warehousing, Data Mining, & OLAP Alex Berson, Stephen Smith, TMHill,2008.
- 4. David L. Olson Dursun Delen, "Advanced Data Mining Techniques," Springer-Verlag Berlin Heidelberg, 2008
- 5. G. K. Gupta, "Introduction to Data Min Data Mining with Case Studies", Eastern Economy Edition, Prentice Hall of India, Third Edition, 2014

- 1. https://onlinecourses.nptel.ac.in/noc21 cs06/preview
- 2. https://archive.nptel.ac.in/courses

	Course Articulation Matrix												
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	3	3	2	3	-	-	-	-	-	-	3	3
CO2	3	3	3	2	2	-	-	-	-	-	-	3	2
CO3	3	3	3	3	3	-	-	-	-	-	-	3	3
CO4	3	3	3	3	3	-	-	-	1	2	-	3	3

Program	M. Tech(CSE-AI)								
Year	I	Sem	ester	I					
Course Name	Natural Language Processing								
Code	GE14214								
Course Type	GE	L	T	P	Credit				
Prerequisite	Basic knowledge of computers, programming, data structures, linguistics, and statistics. 4 0 0 4								
Course Objectives	 To learn the basics of linguistic To study how statistics are appl labeling, and to learn different p To understand the meaning of v sentences. To learn about analysing converbuilding chat-bots. 	ied in N parsing n words and	LP, include the control of the contr	ding seque	roles in				
Course Outcom	es								
CO1	Understand the basics of linguistics with Natural Language Processing		ility, and	statistics	associated				
CO2	Implement a Part-of-Speech (POS) solution for a given domain.								
CO3	Implement semantic processing task indexing and search system using N			simple doo	cument				
CO4	Implement a simple chatbot using of	lialogue	system co	oncepts.					

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction: Natural Language Processing, Components, Basics of Linguistics and Probability & Statistics (Words, Tokenization, Morphology, Finite State Automata). Morphology: Inflectional Morphology, Derivational Morphology, Finite-State Morphological Parsing, Combining an FST Lexicon and Rules, and the Porter Stemmer.	9 Hours.	CO1
2	Statistical Natural Language Processing: N-grams and Language Models, Smoothing Techniques, Text Classification using Naïve, Bayes Classifier, Evaluation Metrics for NLP Models, Vector Semantics, Term Frequency-Inverse Document Frequency (TF-IDF), Word2Vec Embeddings, Evaluation of Vector-Based Semantic Models. Sequence Tagging Techniques:	9 Hours.	CO2

	Sequence Labelling Fundamentals, Part-of-Speech (POS) Tagging, Named Entity Recognition (NER) and Tagging, Transformation-Based Tagging Methods.		
3	Parsing: Top-down, Earley Parsing, Feature Structures, Probabilistic Context, Free Grammars Representing Meaning, Meaning Structure of Language, First Order Predicate Calculus Representing Linguistically Relevant Concepts, Syntax, Driven Semantic Analysis.	9 Hours.	CO3
4	Computational Semantics: Semantic parsing, Word Sense Disambiguation (WSD), discourse structure and coherence, reference resolution, and Question Answering (QA) models. Dialogue Systems : Dialog acts, interpretation, language generation, discourse planning, and machine translation using rule-based and statistical methods (e.g., interlingua, transfer metaphor).	9 Hours	CO4

- 1. Daniel Jurafsky and James H. Martin, Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition (Prentice Hall Series in Artificial Intelligence), 2020.
- 2. Christopher D. Manning and Hinrich Schütze, Foundations of Statistical Natural Language Processing, MIT Press, 2009.
- 3. James Allen, Natural Language Understanding, Addison-Wesley, 1994.

- 1. https://nptel.ac.in/courses/106105158
- 2. https://onlinecourses.nptel.ac.in/noc20_cs87/preview

	Course Articulation Matrix												
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	3	2	2	2	ı	-	-	ı	-	ı	3	2
CO2	3	3	3	3	3	ı	-	-	ı	-	ı	3	3
CO3	3	2	3	2	2	-	-	-	-	-	-	3	3
CO4	3	3	3	3	3	ı	1	-	ı	2	ı	3	3

Program	M. Tech (CSE-AI)									
Year	I	Sem	ester	II						
Course Name	Blockchain Technologies									
Code	GE14221									
Course Type	GE	L	T	P	Credit					
Prerequisite	Computer Networks, Cryptography, Distributed 4 0 0 4 Systems									
Course Objectives	 To understand the fundamental principles and architecture of blockchain technology. To study consensus mechanisms and smart contracts in blockchain systems. To provide hands-on knowledge of Ethereum and Hyperledger platforms. To explore real-world blockchain use cases and challenges. 									
Course Outcom	es									
CO1	Understand the architecture, structusystems.	ire, and k	ey comp	onents of	blockchain					
CO2	Analyse different consensus mecha	nisms an	d their ro	oles in dis	tributed trust.					
CO3	Develop and deploy smart contracts and DApps on Ethereum and Hyperledger.									
CO4	Evaluate blockchain applications as scalability challenges.	nd addres	s their le	gal, ethic	al, and					

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to Blockchain: Distributed systems and ledgers, cryptographic hash functions, Merkle trees, digital signatures, blocks and transactions, blockchain structure. Types of Blockchains: Public, private, and consortium. Blockchain Applications: Cryptocurrency, digital identity, smart assets.	9 Hours.	CO1
2	Consensus Mechanisms and Blockchain Security: Proof-of-Work (PoW), Proof-of-Stake (PoS), Delegated PoS, Practical Byzantine Fault Tolerance (PBFT). Forks, block finality, Sybil attacks, 51% attack, scalability trilemma.	9 Hours.	CO2
3	Smart Contracts and Ethereum Ecosystem: Ethereum architecture, accounts, gas, EVM. Solidity language: syntax, functions, modifiers, events, mappings, inheritance. Tools: MetaMask, Truffle, Remix IDE. ERC standards (ERC-20, ERC-721).	9 Hours.	CO3
4	Enterprise Blockchain & Use Cases: Hyperledger Fabric architecture, peers, chain code, channels, endorsement. Comparison of blockchain platforms. Real-world applications: finance, supply chain, healthcare, voting systems. Challenges: scalability, interoperability, regulation	9 Hours	CO4

- 1. Narayanan, Arvind, et al. Bitcoin and Cryptocurrency Technologies, Princeton University Press, 2016.
- 2. Antonopoulos, Andreas M. Mastering Bitcoin, O'Reilly Media, 2017.
- 3. Bashir, Imran. Mastering Blockchain, Packt Publishing, 2017.

- 1. https://archive.nptel.ac.in/courses/106/105/106105235/
- 2. https://onlinecourses.swayam2.ac.in/aic21_ge01/preview

	Course Articulation Matrix												
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	3	2	2	2	ı	-	-	ı	-	ı	3	2
CO2	3	3	3	3	3	-	-	-	-	2	-	3	3
CO3	3	3	3	3	3	-	-	-	-	2	-	3	3
CO4	3	2	3	3	2	2	-	-	ı	2	-	3	3

Program	M. Tech (CSE-AI)									
Year	I	Sem	ester	II						
Course Name	Internet of Things									
Code	GE14222									
Course Type	GE	L	T	P	Credit					
Prerequisite	Basics of IoT.	4	0	0	4					
	1. To study the fundamentals abou	ıt IoT.								
Course	2. To study the design methodology and different IoT hardware platforms.									
Objectives	3. To study the basics of IoT Data Analytics and supporting services.									
	4. To study about various IoT case	e studies	and indu	strial app	lications.					
Course Outcom	es									
CO1	Explain the fundamental concepts, principles, and challenges in different									
COI	domain.									
CO2	Explain the properties and working	principl	es of vari	ous devic	es used in					
COZ	building smart application.									
CO3	Explain the structure and working principles of communication protocols									
COS	used in building smart application.									
CO4	Build smart application for the given environment using relevant									
CU4	technologies.									

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to Internet of Things: Vision, Definition, Conceptual Framework, Architectural view, technology behind IoT, Sources of the IoT, M2M Communication, IoT Examples. Design Principles for Connected Devices: IoT/M2M systems layers and design standardization, communication technologies, data enrichment and consolidation, ease of designing and affordability	9 Hours.	CO1
2	Hardware for IoT: Sensors, Digital sensors, actuators, radio frequency identification (RFID) technology, wireless sensor networks, participatory sensing technology. Embedded Platforms for IoT: Embedded computing basics, Overview of IOT supported Hardware platforms such as Arduino, NetArduino, Setup the IDE, Using Arduino Software, Arduino Simulation Environment, Raspberry pi, Beagle Bone, Intel Galileo boards and ARM cortex.	9 Hours.	CO2
3	Network & Communication aspects in IoT: Wireless Medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination. Application Layer Protocols: CoAP and MQTT. Wireless Communication Protocols: Bluetooth, Wi-Fi, Zigbee, LoRaWAN, NFC, RFID, 6LoWPAN, NBIoT. Wired Communication Protocols: UART, SPI, I2C, CAN, Interfacing ESP32CAM module with ESP32 microcontroller.	9 Hours.	CO3

	Challenges in	IoT Des	ign challenge	es: Deve	lopment		
	Challenges, Sec	T.					
4	Case Study:	Weather	Monitoring,	Smart	Traffic	9 Hours	CO4
	Management,	Pollution	Monitoring,	Smart	Home		
	Automation, Ac	cident Detec	tion and Alert.				

- 1. IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things, David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jerome Henry, Cisco Press, 2017
- 2. Internet of Things A hands-on approach, Arshdeep Bahga, Vijay Madisetti, Universities Press, 2015
- 3. Internet of Things: Architecture, Design Principles And Applications, Rajkamal, McGraw Hill Higher Education.

- 1. https://archive.nptel.ac.in/courses/106/105/106105166/
- 2. https://onlinecourses.swayam2.ac.in/ntr24_ed01/preview

	Course Articulation Matrix												
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	3	2	2	2	-	-	-	-	-	-	3	2
CO2	3	3	3	2	3	-	-	-	-	-	-	3	3
CO3	3	3	3	3	2	1	-	-	-	-	1	3	3
CO4	3	3	3	3	3	-	1	-	1	2	-	3	3

Program	M. Tech (CSE-AI)									
Year	I	Sem	Semester II							
Course Name	Explainable AI									
Code	GE14223									
Course Type	GE	L	Т	P	Credit					
Prerequisite	Basic Knowledge of computer fundamentals and Programming Concepts. 4 0 0 4									
Course Outcom	 To build a strong foundation in Artificial Intelligence concepts, including its history, types, and intelligent agent-based systems. To develop analytical and problem-solving skills using search algorithms, constraint satisfaction, and game theory techniques To enhance reasoning and decision-making abilities through expert systems and logical knowledge representation. To apply NLP, reinforcement learning, and fuzzy logic techniques for intelligent analysis, decision-making, and handling uncertainty in real-world scenarios. 									
COurse Outcom										
COI	Understand the fundamental concepts of Artific									
CO2	Analyse various problem-solving strategies in A algorithms, game theory, and constraint satisfactories.				_					
CO3	Apply knowledge-based systems and logical reapropositional and first-order logic to model intel	_			_					
CO4	Apply Natural Language Processing techniques processing human language data.	for ana	lysing	and						

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to AI, History of AI, Strong AI & Weak AI, Turing Test, Agents and its Types, Environments, and Intelligent Agents.	9 Hours.	CO1
2	Problem-Solving, Solving Problems by Searching, Search in Complex Environments, Types of searching algorithms, Informed Searching, Uninformed Searching and its types, Constraint Satisfaction Problem Adversarial Search, local search problems, and game playing, game theory: ALPHABETA PRUNING and Min Max algorithm.	9 Hours.	CO2
3	Expert System, Knowledge, Reasoning, and Planning, Logical Agents, First-Order Logic, Propositional Logic, Inference in First-Order Logic, Quantifiers.	9 Hours.	CO3

4	Natural Language Processing, Sentimental Analysis, NLP Components, NLP Applications, Text Vectorization, and NLP Pipeline. Reinforcement Learning and its components, Model-based and model-free learning, Markov Decision Process (MDP), value functions, state value functions, state value action functions, Bellman equations, optimal value functions, and Q-learning, SARSA, MONTE CARLO, Temporal Difference Learning, Dynamic Programming. Fuzzy Inference System (FIS), Fuzzy Logic, Membership Functions, Fuzzification and Defuzzification, Types of Fuzzy Systems.	9 Hours	CO4
---	--	---------	-----

- 1. Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 4th Edition, Pearson Education, 2020.
- 2. Elaine Rich, Kevin Knight, and Shivashankar B. Nair, Artificial Intelligence, 3rd Edition, Tata McGraw-Hill, 2009.

- 1. https://www.coursera.org/specializations/explainable-artificial-intelligence-xai
- 2. https://www.udemy.com/course/xai-explain-ml-models/?srsltid=AfmBOooJ37lrNTnp58EcPXNBerJlHIQD5AIY8qswxAkQbvrtvkQT wH5Y&couponCode=PMNVD2025

	Course Articulation Matrix												
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	2	2	2	2	ı	-	-	-	-	ı	3	2
CO2	3	3	3	3	3	ı	-	-	-	2	ı	3	3
CO3	3	3	3	3	3	ı	-	-	-	2	ı	3	3
CO4	3	2	3	3	3	ı	ı	-	ı	2	ı	3	3

Program	M. Tech (CSE-AI)				
Year	I	Sem	ester	II	
Course Name	Swarm Intelligence				
Code	GE14224				
Course Type	GE	L	T	P	Credit
Prerequisite	Basic understanding of AI, algorithms, and optimization techniques is required.	4	0	0	4
Course Objectives	 Introduce the fundamentals of its biological inspirations and conspired AI techniques. Explain core properties of swar organization, decentralization, its organization, decentralization, its biological basis, all world applications. Develop a strong understandi (PSO) and explore additional behavioral models, algorithmic optimization problems. Bee Algorithm, Firefly Algorithhighlighting their design princip 	omparing arm-base robustnes of Ant Co gorithmi ng of Pa swarm I impleme nm, Cuck	ed systemes, and so olony Ope structurticle Sybased algentation,	traditional as such as calability. ptimization are, variant varm Opt gorithms and practic ch, and Ba	and nature- self- on (ACO), ts, and real- imization including its cal use in t Algorithm,
Course Outcom	es				
CO1	Formulate and assess problems in e intelligence. Evaluate the strengths approaches to evolutionary and swa	and wea arm-base	knesses of the d	of alternat	ive
CO2	Determine and analyse the key comevolutionary and swarm-based mode	lels.			
CO3	Advance techniques in evolutionary on problems such as optimization, a machine learning, and modelling.	automati	e progran	nming, co	entrol,
CO4	Develop a proposal for an extended an experiment in evolutionary com		1 3	. Design a	nd conduct

Module	Course Contents	Contact Hrs.	Mapped CO
1	Unit 1: Introduction to Swarm Intelligence Definition and overview of swarm intelligence (SI), Natural inspirations: Ant colonies, bird flocking, fish schooling, bee hives, Key properties: Self-organization, decentralization, robustness, scalability, Comparison with traditional AI and other nature-inspired computing techniques, Applications of SI in optimization, robotics, and distributed systems	9 Hours.	CO1
2	Ant Colony Optimization (ACO) Introduction to Ant Colony Optimization, Biological background: Foraging behaviour of real ants, ACO algorithm components: Pheromone updating, probability transition rule ,Variants of ACO: Ant System, Ant Colony System, MAX-	9 Hours.	CO2

	MIN ACO, Applications: Traveling Salesman Problem (TSP), scheduling, routing, etc. Case studies and simulation using Python/Matlab Particle Swarm Optimization (PSO) Introduction to Particle Swarm Optimization, Biological background: Bird flocking and fish schooling, PSO algorithm: Velocity and position updates, inertia weight, personal/global best, Variants of PSO: Constriction factor, hybrid PSO, Applications: Function optimization, neural network training, feature selection, Implementation and parameter tuning		
3	Other Swarm-Based Algorithms Bee Algorithm and Artificial Bee Colony (ABC), Firefly Algorithm, Cuckoo Search Algorithm, Bat Algorithm, Comparative analysis of algorithms: Strengths and weaknesses, Implementation examples and real-world use cases	9 Hours.	CO3
4	Applications and Research Trends Swarm robotics: Coordination, control, and navigation, Multi-agent systems and distributed problem solving ,SI in wireless sensor networks, IoT, smart grids, Recent research trends and future directions in SI, Project work, case studies, and open-source tools (e.g., NetLogo, Swarm, MATLAB)Ethical and practical considerations in deploying SI systems	9 Hours	CO4

- 1. Floreano D. and Mattiussi C., "Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies", MIT Press, Cambridge, MA, 2008.
- **2.** Albert Y.Zomaya, "Handbook of Nature-Inspired and Innovative Computing", Springer, 2006.

Online Resources

1. https://www.udemy.com/course/an-introduction-to-swarm-algorithms-for-business/?srsltid=AfmBOopWLd_bWJ19d7Y9P5s5DJJjJuRKSAfO4lr0ZIDZHhhw6UBGVyM1&couponCode=NVDIN35

	Course Articulation Matrix												
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	3	3	2	2	-	-	-	1	2	-	3	2
CO2	3	3	3	2	3	-	-	-	1	-	-	3	3
CO3	3	3	3	3	3	-	-	-	1	-	1	3	3
CO4	3	3	3	3	3	2	-	-	2	2	2	3	3

Program	M. Tech (CSE-AI)										
Year	I	Sem	ester	II							
Course Name	AI Policy and Governance										
Code	GE14231										
Course Type	GE	L	T	P	Credit						
Prerequisite	Basic knowledge of core AI, Data Science, Machine learning, Ethics in AI.	4	0	0	4						
Course Objectives	 To develop a comprehensive und To understand and analyse the et To equip students to apply resear governance. To design and implement effective To prepare students to navigate the policies surrounding AI application 	hical imports method we AI goven the hidden the hidden the hical material m	olications odologies vernance	of AI. on AI po	licy and						

Course Outco	mes
CO1	Understand the complex interplay of AI development and regulatory practices, comprehending how emerging technologies influence and are influenced by public norms and values.
CO2	Apply interdisciplinary approaches integrating knowledge from the humanities, social sciences, and public policy to evaluate the social impact of emerging AI applications in real world scenarios.
CO3	Analyse emerging AI governance strategies, critically assessing their origins, applications, and effectiveness for responsible AI management and regulation.
CO4	Identify and remember core principles, challenges and developments in AI governance, including essential policy milestones and landmark case studies.

Module	Course Contents	Contact Hrs.	Mapped CO
1	AI Ethics and Responsible AI: Overview of ethical theories, Ethical considerations in AI development, Core ethical principles (fairness, accountability, transparency, privacy, safety, human oversight), Understanding Bias in AI algorithm systems (data bias, algorithmic bias, societal implications), Explainable AI (XAI) and interpretability, Ethical frameworks for AI development and deployment, Case studies of ethical dilemmas in AI like autonomous vehicles, facial recognition, predictive policing and decision making.	9 Hours.	CO1
2	AI Law and Regulation: Introduction to Legal Frameworks Governing AI, Intellectual property rights in AI, GDPR and other data protection regulations, Legal requirements for explainable AI, Liability issues, and regulatory challenges.	9 Hours.	CO2

	Regulatory approaches to AI as EU AI Act, US approaches, Indian policy landscape, International AI governance initiatives, Cyber security and AI (AI for security, security of AI systems), Challenges in regulating AI technologies, and Policy recommendations for AI regulation.		
3	AI Policy and Governance Framework development: National AI strategies, Role of governments, industry, civil society, and academia in AI governance, Standardization and certification for AI systems, Public engagement and stakeholder participation in AI policy, Future of work and AI's impact on society. Privacy, Bias and Fairness:- Ethical guidelines and frameworks for AI design, Ethical considerations in AI research and development, Responsible AI engineering practices, Ethical and legal implications of data collection and usage in AI, Privacy-enhancing technologies, Fairness metrics, and evaluation methods, mitigating bias in AI systems.	9 Hours.	CO3
4	Algorithmic Governance and Society: Impact of AI on democracy, human rights, and social justice, Regulation of AI in specific sectors (e.g., healthcare, finance, defense), AI for public good and sustainable development goals, AI in public administration and smart cities. Societal Impacts and Ethical Decision-Making: Ethical implications of AI on employment, inequality, AI and the future of work, International and national efforts for AI governance, Strategies for Addressing Societal Concerns, Ethical decision-making frameworks in AI, and practical exercises on ethical AI design and deployment.	9 Hours	CO4

- 1. Müller, Vincent C. Ethics of Artificial Intelligence. The Routledge Social Science Handbook of AI (London: Routledge), 2021.
- 2. Calo, Ryan, A. Michael Froomkin, and Ian Kerr. Robot Law. Edward Elgar Publishing, 2016.

Online Resources

1. https://onlinecourses.nptel.ac.in/noc25_lw12/preview

	Course Articulation Matrix												
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	2	3	2	2	2	3	3	3	-	2	2	2	2
CO2	2	3	3	2	2	3	3	3	2	3	2	2	2
CO3	3	3	3	2	3	3	3	3	-	2	2	3	3
CO4	2	2	2	1	2	3	3	3	1	2	2	2	2

Program	M. Tech(CSE-AI)										
Year	I	Sem	ester	II							
Course Name	Data Ethics in AI										
Code	GE14232										
Course Type	GE L T P Credit										
Prerequisite	Basic understanding of Artificial Intelligence, Machine Learning, Programming fundamentals (preferably Python), and ethical awareness related to technology and society.	4	0	0	4						
Course Objectives	 To introduce ethical concepts a To examine global ethical frameworks in AI. To understand roboethics a applications. To analyze ethical challenge implementations. 	initiative	es, stand	dards, an	d regulatory s in robotic						
Course Outcom	es										
CO1	Explain ethical principles and analy and environmental impacts.	yze AI's	societal,	legal, psy	chological,						
CO2	Evaluate ethical concerns and regulars case studies.	•									
CO3	Interpret roboethics frameworks an robotics.	d profess	sional eth	ical respo	onsibilities in						
CO4	Assess ethical issues and policy strindustries.	ategies ir	ı AI appl	ications a	cross						

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction: definition of morality and ethics in ai, impact on society, impact on human psychology-impact on the legal system, impact on the environment and the planet, impact on trust.	9 Hours.	CO1
2	ETHICAL INITIATIVES IN AI: international ethical initiatives, ethical harms and concerns, Case study: healthcare robots, autonomous vehicles, warfare and weaponization. AI STANDARDS AND REGULATION: model process for addressing ethical concerns during system design, transparency of autonomous systems, data privacy process, algorithmic bias considerations, ontological standard for ethically driven robotics and automation systems	9 Hours.	CO2
3	ROBOETHICS: SOCIAL AND ETHICAL IMPLICATION OF ROBOTICS: robot-roboethics, ethics	9 Hours.	CO3

	and morality, moral theories, ethics in science and technology, ethical issues in an ict society, harmonization of principles, ethics and professional responsibility roboethics taxonomy.		
4	AI AND ETHICS- CHALLENGES AND OPPORTUNITIES: challenges, opportunities, ethical issues in artificial intelligence, societal issues concerning the application of artificial intelligence in medicine, decision-making role in industries, national and international strategies on ai.	9 Hours	CO4

- 1. Eleanor Bird, Jasmin Fox-Skelly, Nicola Jenner, Ruth Larbey, Emma Weitkamp and Alan Winfield, "The ethics of artificial intelligence: Issues and initiatives", EPRS | European Parliamentary Research Service Scientific Foresight Unit (STOA) PE 634.452 March 2020
- **2.** Patrick Lin, Keith Abney, George A Bekey," Robot Ethics: The Ethical and Social Implications of Robotics", The MIT Press- January 2014.

- 1. https://swayam-plus.swayam2.ac.in/courses/course-details?id=P INTEL 02
- 2. https://onlinecourses.nptel.ac.in/noc25_lw12/preview

	Course Articulation Matrix												
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	2	2	2	1	2	3	3	3	-	2	2	2	2
CO2	3	2	2	2	2	3	3	3	2	3	2	2	2
CO3	2	2	2	2	2	3	3	3	-	2	2	2	2
CO4	2	2	2	2	2	3	3	3	1	2	2	2	2

Program	m M. Tech(CSE-AI)									
Year	Ι	Semester		II						
Course Name	Responsible AI									
Code	GE14233									
Course Type	GE	L	T	P	Credit					
Prerequisite	Basic knowledge of Artificial Intelligence/Machine Learning, programming skills in Python, and fundamental concepts of probability and statistics. Prior exposure to data analysis and awareness of ethical issues in technology is beneficial but not mandatory.	4	0	0	4					
Course Objectives	 Understand the principles and challenges of Responsible AI. Learn to identify and mitigate bias in AI systems. Explore methods for explainability and interpretability in AI. Study AI safety, security, and privacy techniques. 									
Course Outcom	es									
CO1	Describe key principles and challenges of Respons fairness and safety.	ible A	AI, inc	udin	g					
CO2	Detect and mitigate bias using fairness metrics and tools									
CO3	Apply explainability and interpretability technique	s in A	I mod	els.						
CO4	Analyze and address safety, security, and privacy i	n AI s	system	ıs.						

Module	Course Contents	Contact Hrs.	Mapped CO
1	INRODUCTION TO RESPONSIBLE AI: Overview of AI, Common misconception of AI, Introduction to Responsible AI, Characteristics of Responsible AI, Key principles of responsible AI, Challenges in implementing responsible AI, ELSI Framework and AI, Safety and Alignment, Fairness and Privacy.	9 Hours.	CO1
2	FAIRNESS AND BIAS: Human Bias, Types of biases, Effects of biases on different demographics, Bias vs Fairness, Sources of Biases, Exploratory data analysis, Bias Mitigation Techniques, Preprocessing techniques, In-processing techniques, post-processing techniques, Bias detection tools, Overview of fairness in AI, Group fairness and Individual fairness, Counterfactual fairness, Fairness metrics, Bias and disparity mitigation with Fairlearn.	9 Hours.	CO2
3	EXPLAINABILITY & INTERPRETABILITY: Importance of Explainability and Interpretability – Challenges, Interpretability through simplification and visualization, Intrinsic interpretable methods, Post Hoc interpretability, Interpretability Evaluation methods, Explainability through causality, Model agnostic Interpretation,	9 Hours.	CO3

	SAFETY, SECURITY, AND PRIVACY:		
	Overview of safety – security – privacy - resilience -		
	Taxonomy of AI safety and Security - Adversarial attacks		
4	and mitigation - Model and data security - The ML life cycle	9 Hours	CO4
	- Adopting an ML life cycle MLOps and ModelOps - Model		
	drift - Data drift, Concept drift, Privacy-preserving AI		
	techniques, Differential privacy, Federated learning.		

- 1. M. Sridhar, Abhijeet Chavan, "Responsible AI: Implementing AI with Trustworthiness and Fairness", Wiley, 2023. Covers fairness, accountability, transparency, safety, and real-world applications.
- 2. Sandra Wachter, Brent Mittelstadt, "The Ethics of Artificial Intelligence", Oxford University Press (Forthcoming), Preprint articles available online. Deep dive into ELSI, legal frameworks, and AI governance.
- 3. Suresh Venkatasubramanian & Solon Barocas, "Fairness and Machine Learning: Limitations and Opportunities" (2023, online). https://fairmlbook.org (Free and open resource) Comprehensive resource on bias, fairness metrics, and mitigation techniques.

- 1. https://onlinecourses.nptel.ac.in/noc24 cs132/preview
- 2. https://onlinecourses.nptel.ac.in/noc25 lw12/preview

	Course Articulation Matrix												
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	2	2	2	2	3	3	3	-	2	2	3	2
CO2	3	3	3	2	3	3	3	3	2	2	2	3	3
CO3	3	3	3	2	3	3	3	3	-	2	2	3	3
CO4	3	3	3	2	3	3	3	3	2	2	2	3	3

Program	M. Tech										
Year	I	Sem	ester	II							
Course Name	AI for Cyber Security	AI for Cyber Security									
Code	GE14234										
Course Type	GE L T P Credit										
Prerequisite	AI Basics and Security 4 0 0										
Course Objectives	 To give an overview of different AI and Machine Learning models in Cyber Security To study Various attack on ML models To study Machine Learning and Privacy To study of assisted intelligence in Artificial Intelligence and Cybercrime in mobile platform and Procedural Issues Duty of Care in cyber security laws 										
Course Outcom	es										
CO1	Introduction: Role of AI in Cyber S Artificial Intelligence in Cyber Sec	•	ınd Secur	rity Frame	ework:						
CO2	Understand the concepts in Machin	e Learni	ng								
CO3	An Introduction of Cyber Security Algorithms	An Introduction of Cyber Security Mechanisms Using Deep Learning Algorithms									
CO4	The concept of cybercrime with Ar	tificial Ir	ntelligenc	e in Cybe	er Security:						

Module	Course Contents	Contact Hrs.	Mapped CO
1	Artificial Intelligence and Cyber Security: Artificial Intelligence: Basic concepts of AI; Intelligent agents; solving problems by searching –Uniformed search, Informed search; Logical agents; first-order logic; knowledge representations. Introduction to Cyber Security: Basic Cyber Security Concepts, layers of security, Vulnerability, threat, Harmful acts, Internet Governance – Challenges and Constraints, Computer Criminals, Security Models, Cyber Crime, Cyber terrorism, Cyber Espionage, Comprehensive Cyber Security Policy etc.	9 Hours.	CO1
2	Machine Learning in Security: Introduction to Machine Learning, Applications of Machine Learning in Cyber Security Domain, Machine Learning: tasks and Approaches, Anomaly Detection, Privacy Preserving Nearest Neighbour Search, Machine Learning for Malware detection and classification, Malware detection and classification, Online Learning Methods for Detecting Malicious Executables	9 Hours.	CO2
3	Deep Learning in Security: Introduction to deep learning, Cyber Security Mechanisms Using Deep Learning Algorithms, Applying deep learning in various use cases, Network Cyber Threat Detection	9 Hours.	CO3

4	Cybercrime: Mobile and Wireless Devices: Introduction, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Artificial Intelligence in Cyber Security: Model Stealing & Watermarking, Network Traffic Analysis, Malware Analysis Critically assess the strengths, limitation and potential vulnerable of AI-ML techniques in Cybersecurity application multiple AI and ML technoques to detect, classify and mitigate a range of cyber threats across different domain	9 Hours	CO4
---	--	---------	-----

- 1. Nina Godbole and Sunit Belpure, Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives, Wiley
- 2. B. B. Gupta, D. P. Agrawal, Haoxiang Wang, Computer and Cyber Security: PrinciplesAlgorithm, Applications, and Perspectives, CRC Press, ISBN 9780815371335, 2018.
- 3. Russell, S. and Norvig, P, Artificial Intelligence: A Modern Approach, Third Edition, PrenticeHall, 2010.

- 1. https://onlinecourses.nptel.ac.in/noc23 cs127/preview
- 2. https://www.youtube.com/watch?v=wRUiRm3dK3U

	Course Articulation Matrix												
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	2	2	2	2	3	3	3	-	2	2	3	2
CO2	3	3	3	2	3	3	2	2	-	2	2	3	3
CO3	3	3	3	2	3	3	2	2	-	2	2	3	3
CO4	2	2	2	2	2	3	3	3	2	2	2	3	2

Program	M. Tech										
Year	II	Sem	ester	III							
Course Name	Cloud Computing										
Code	GE14241	GE14241									
Course Type	GE L T P Credit										
Prerequisite	Operating Systems, Computer 4 0 4										
Course Objectives	To explain the architectural model cloud environments. To impart knowledge about schallenges in cloud-based systems.	To impart knowledge about security, compliance, and performance challenges in cloud-based systems. To provide hands-on experience in using popular cloud platforms to design									
Course Outcom	es										
CO1	Explain the core principles, servic Computing.	e models	s, and de	ployment	types in Cloud						
CO2	Illustrate how cloud architectures efficient resource utilization.	s and vi	rtualizat	ion enabl	le scalable and						
CO3	Assess key security, privacy, and services.	d perform	nance co	oncerns r	elated to cloud						
CO4	Apply cloud tools and platforms applications.	to buil	d and d	eploy bas	sic cloud-based						

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to Cloud Computing: Definition and characteristics of Cloud Computing, Evolution from Grid to Cloud, Service Models: IaaS, PaaS, SaaS, Deployment Models: Public, Private, Hybrid, Community, Comparison with traditional IT infrastructure, Benefits and challenges of cloud adoption	9 Hours.	CO1
2	Cloud Architecture and Virtualization: Cloud reference architecture (NIST Model), Virtualization: Concepts, Types (Full, Para, OS-level), Hypervisors: Type 1 and Type 2, Containers vs. Virtual Machines, Storage virtualization and cloud data management, Resource pooling and elasticity	9 Hours.	CO2
3	Cloud Security and Performance: Security issues in cloud: Data breaches, multi-tenancy risks, Authentication, Authorization, and Identity Management, Regulatory compliance and legal issues (GDPR, HIPAA, etc.), Cloud performance metrics, Monitoring tools and SLAs (Service Level Agreements), Risk assessment and mitigation.	9 Hours.	CO3
4	Cloud Platforms and Applications: Overview of public cloud providers: AWS, Azure, GCP, Working with Compute (EC2, App Engine), Storage (S3, Blob), Sample deployment of a web app on a cloud platform, Use cases: Cloud in Education, Business, Healthcare, Introduction to Serverless, Edge, and Multi-cloud computing, Future trends: AI in Cloud, Green Cloud,	9 Hours	CO4

- 1. Rajkumar Buyya et al., *Mastering Cloud Computing*, McGraw Hill 2. Thomas Erl, *Cloud Computing: Concepts, Technology & Architecture*, Pearson

- 1-https://onlinecourses.nptel.ac.in/noc21_cs14/preview
- 2-https://archive.nptel.ac.in/courses/106/105/106105167/

	Course Articulation Matrix														
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO 6	PO7	PO8	PO9	PO1 0	PO11	PO1 2	PSO1	PSO2	
CO1	3	2	2	2	1	-	-	-	-	-	-	-	2	3	
CO2	3	3	3	2	2	-	-	-	-	-	-	-	2	3	
CO3	3	3	3	3	2	-	1	-	-	-	1	-	2	3	
CO4	3	3	3	3	3	-	1	1	-	-		-	3	3	

D	M T1.				1							
Program	M. Tech			I								
Year	II	Sem	ester	III								
Course Name	Distributed Systems											
Code	GE14242											
Course Type	GE	L	T	P	Credit							
Prerequisite	Operating Systems, Computer Networks, Basics of Algorithms & 4 0 0 4 Data Structures											
Course Objectives	 systems, including architectural at Explore the design of algorithms coordination, mutual exclusion, at Analyze techniques for fault tole distributed environments. Examine real-world distributed from the current frameworks like MapRed 	4. Examine real-world distributed file systems and database systems, and explore current frameworks like MapReduce and Spark.5. Apply distributed algorithms and consistency models in the design of scalable										
Course Outcom												
CO1	Understand the design principles, mod distributed systems.											
CO2	Apply synchronization, coordination, environments.	and election	on algorit	hms in dis	tributed							
CO3	Analyze transaction processing, fault t distributed systems.	colerance,	and recov	ery mecha	nnisms in							
CO4	Implement distributed system compon	ents and e	valuate fa	ault tolerar	nce mechanisms.							

Module	Course Contents	Contact Hrs.	Mapped CO
1	Foundations of Distributed Systems: Introduction to Distributed Systems, Types and Architecture; Characteristics: Transparency, Fault Tolerance, Scalability; System Models: Architectural & Fundamental; Interprocess Communication: Sockets, Message Passing, Remote Procedure Calls (RPC), Remote Method Invocation (RMI); High-level Communication Models; Publish-Subscribe Systems.	9 Hours.	CO1
2	Time, Coordination, and Agreement: Logical Clocks (Lamport, Vector Clocks), Clock Synchronization (Cristian's and Berkeley Algorithms), Global State and Snapshot Algorithms, Distributed Mutual Exclusion (Ricart-Agrawala, Token-based), Group Mutual Exclusion, Leader Election (Bully, Ring), Deadlock Detection, Termination Detection, Consensus Algorithms (Paxos, Raft).	9 Hours.	CO2
3	Data Management in Distributed Systems: Distributed File Systems: Architecture and Case Studies (Google File System, HDFS, Dropbox), Distributed Databases: Design, Replication Techniques, Partitioning; Consistency Models: Data-Centric and Client-Centric, Quorum-based Systems; Case Studies: Bigtable, Amazon Aurora, Spanner.	9 Hours.	CO3
4	Fault Tolerance & Advanced Systems: Fault Models, Failure Detection, Agreement, Checkpointing, Recovery; Commit Protocols (2PC, 3PC), Voting; Concurrency Control (Locking, OCC, Timestamp), Distributed Recovery; Distributed Shared Memory (IVY, Munin), MapReduce, Spark, RDD, Kafka, Blockchain Basics, Web Services.	9 Hours	CO4

- 1. Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems: Principles and Paradigms, Publisher: Pearson / Prentice Hall, 2nd Edition, 2007
- 2. Ajay D. Kshemkalyani and Mukesh Singhal, Distributed Computing: Principles, Algorithms and Systems, Publisher: Cambridge University Press, 2011
- 3. George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair, Distributed Systems: Concepts and Design, Publisher: Pearson Education, 5th Edition, 2017

Online Resources

1-https://archive.nptel.ac.in/courses/106/106/106106168/

2-https://onlinecourses.nptel.ac.in/noc21_cs87/preview

	Course Articulation Matrix														
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO 6	PO7	PO8	PO9	PO1 0	PO11	PO1 2	PSO1	PSO2	
CO1	3	2	2	2	1	-	-	-	-	-	-	2	3	2	
CO2	3	3	3	2	2	-	-	-	-	-	-	2	3	3	
CO3	3	3	3	3	2	-	-	-	-	-	-	2	3	3	
CO4	3	3	3	3	3	-	-	-	-	-	-	3	3	3	

Program	M. Tech											
Year	II	Semo	ester	III								
Course Name	Big Data Analytics											
Code	GE14243											
Course Type	GE	GE L T P Credit										
Prerequisite	Data Mining, Databases, Programming in Python/Java											
Course Objectives	 To introduce the fundamental concepts and techniques of big data analytics. To understand Hadoop architecture and its ecosystem components such as HDFS, MapReduce, Pig, Hive, Spark, MongoDB. To implement big data storage and processing using modern tools. To perform real-time analytics using R, Spark, and other frameworks. To explore NoSQL databases for handling semi-structured and unstructured data. 											
Course Outcom	es											
CO1	Understand the architecture and eccuse cases.	osystem (of Big Da	ata platfor	rms and their							
CO2	Apply HDFS and MapReduce para	digms to	process	large-scal	e datasets.							
CO3	Design and query semi-structured of	lata using	g Pig, Hiv	ve, and M	longoDB tools.							
CO4	Implement advanced analytics usin analysis.	g Spark,	R, and ex	xplore we	b and text data							

Module	Course Contents	Contact Hrs.	Mappe d CO
1	Big Data Fundamentals & Hadoop Introduction: Types of Digital Data; Evolution, Definition, and Characteristics of Big Data; Big Data vs Traditional BI; Big Data Analytics – Types and Importance; Hadoop Introduction: History, Architecture, Components, HDFS Basics, YARN, Hadoop Ecosystem Overview (Hive, Pig, Spark, HBase, Flume, Sqoop).	9 Hours.	CO1
2	HDFS and MapReduce Programming: HDFS Architecture, Block Structure, Commands, File Read/Write Flow, Fault Tolerance; MapReduce Programming Model: Mapper, Reducer, Combiner, Partitioner; Execution Phases; Data Compression, Input/Output Formats, Failures and Recovery.		CO2
3	Big Data Tools – Pig, Hive, MongoDB: Pig Latin Syntax and Operators, UDFs, Pig Execution Modes; Hive Architecture, HiveQL, Tables, Querying, UDFs, RC Files; MongoDB: Architecture, BSON, CRUD Operations, Query Language, Indexing, Replication.		CO3
4	Advanced Analytics – Spark, R & Web Analytics: Introduction to Apache Spark – RDDs, Transformations, Actions, SparkSQL; Big Data Analytics using R – Supervised & Unsupervised Learning; Case Study on Collaborative Filtering; Web and Text Mining – Web Content, Structure, and Link Analytics.	9 Hours	CO4

- 1. Tom White, Hadoop: The Definitive Guide, O'Reilly, 4th Edition, 2015.
- 2. Viktor Mayer-Schönberger & Kenneth Cukier, Big Data: A Revolution That Will Transform How We Live, Work, and Think, Houghton Mifflin Harcourt.
- 3. Jure Leskovec, Anand Rajaraman, and Jeff Ullman, Mining of Massive Datasets, Cambridge University Press, 3rd Edition.

- 1. https://hadoop.apache.org/
- 2. https://spark.apache.org/
- 3. https://www.mongodb.com/

	Course Articulation Matrix														
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO 6	PO7	PO8	PO9	PO1 0	PO11	PO1 2	PSO1	PSO2	
CO1	3	2	2	2	2	_	_	_	1	2	_	1	3	2	
CO2	3	3	3	3	2	_	_	_	2	2	_	1	3	2	
CO3	3	3	3	3	2	_	_	_	2	2	_	1	3	2	
CO4	3	3	3	3	3	_	_	_	2	3	_	2	3	3	

Program	M.Tech CSE										
Year	II	Sem	ester	III							
Course Name	Digital Twin Technology										
Code	GE14244										
Course Type	L T P Credit										
Prerequisite	Basics of IoT, Data Analytics, and AI 0 0 4										
Course Objectives	 To introduce the fundamental concepts and architecture of Digital Twin systems. To understand integration of physical systems with real-time data and simulations. To explore applications in smart manufacturing, healthcare, transportation, and infrastructure. To design and implement basic digital twin prototypes using simulation and real-world data. 										
Course Outcom	es										
CO1	Understand the principles and archi	itecture c	of digital	twin syste	ems.						
CO2	Design and simulate real-time virtu	al model	s for phy	sical syst	ems.						
CO3	Integrate AI/ML models with digital	al twin fo	or decisio	n-making							
CO4	Apply digital twin concepts to real-	world do	omains a	nd assess	feasibility.						

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to Digital Twins, Definition and evolution of digital twins, Digital Twin vs. Simulation vs. Cyber-Physical Systems, Components: Physical asset, virtual model, data connection, Types of Digital Twins (Product, Process, System, etc.) Use-cases across industries	30 Hours.	CO1
2	Architecture and Technologies, Digital Twin architecture layers, Sensors and IoT infrastructure, Real-time data integration and telemetry, Communication protocols (MQTT, OPC-UA, REST APIs), Cloud, edge, and fog computing for twins.	30 Hours.	CO2
3	Modeling, Simulation & AI Integration, Simulation models (physics-based, data-driven), Tools: MATLAB, Simulink, AnyLogic, Unity, TwinCAT, Integration with AI/ML for prediction, optimization, Data assimilation, time-series analysis, and feedback loops, Introduction to Digital Twin standards (DAML, ISO, etc.), Reinforcement learning for control system.	30 Hours.	CO3
4	Applications & Challenges, Digital Twin in Smart Manufacturing, Healthcare, Robotics and Autonomous system, Smart Cities, Predictive maintenance, performance optimization, BIM and Digital Twins in infrastructure, Security, privacy, and data governance, Scalability and interoperability challenges.	30 Hours	CO4

- 1. Michael Grieves, Digital Twin: Manufacturing Excellence through Virtual Factory Replication.
- 2. Rajkumar Buyya, Fog and Edge Computing.

- 1- https://www.sw.siemens.com/en-US/digital-twin/
- 2-https://www.ibm.com/topics/digital-twin

	Course Articulation Matrix														
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2		
CO1	3	2	-	-	-	-	-	-	-	-	-	3	2	-	
CO2	3	2	3	2	3	-	-	-	-	-	-	3	2	-	
CO3	3	3	3	3	3	-	-	-	-	-	-	3	3	-	
CO4	2	3	3	2	2	2	-	-	2	2	2	2	3	-	