BABU BANARASI DAS UNIVERSITY School of Engineering (School Code: 04)

Department of Computer Science and Engineering (University Branch Code: 39)

Bachelor of Technology: Computer Science and Engineering (Artificial Intelligence)

Evaluation Scheme

SEMES	TER I								
se Jory	Course			ontac Hours		Eval	uation S	scheme	
Course	Code	Code Title	L	Т	Р	CIA	ESE	Course Total	Credits
BSC	NBS4101	Matrices and Calculus	3	1	0	40	60	100	4
ESC	NCS4101	Computer Concepts & Programming in C	3	0	0	40	60	100	3
ESC	NCS4151	Programming in C Lab	0	0	2	40	60	100	1
Students need to select either GROUP 'A' or GROUP 'B'									
NGP4101 General Proficiency						100		100	1
	-	Total	6	1	2	220	180	400	9

GROUP	GROUP 'A'											
rse gory	Course			ontac Hours		Eval	uation S	Scheme				
Course	Code	Code Title	L T P CIA ESE		ESE	Course Total	Credits					
BSC	NBS4102	Engineering Physics	3	1	0	40	60	100	4			
ESC	NME4101	Engineering Mechanics	3	1	0	40	60	100	4			
ESC	NEC4101	Basic Electronics Engineering	3	0	0	40	60	100	3			
CCC	NBSCC1101	Environment & Ecological Sustainability	3	0	0	40	60	100	3			
ESC	NME4151	Engineering Mechanics Lab	0	0	2	40	60	100	1			
ESC	NME4152	Workshop Practices	0	0	2	40	60	100	1			
BSC	NBS4152	Engineering Physics Lab	0	0	2	40	60	100	1			
	To	otal	12	2	6	280	420	700	17			

GROUP	' 'B'								
se ory				ontac Hours		Eva	aluation	Scheme	
Course	Course Code	Code Title	L	Т	Р	CIA	ESE	Course Total	Credits
ESC	NEE4101	Basic Electrical Engineering	3	1	0	40	60	100	4
BSC	NBS4103	Engineering Chemistry	3	1	0	40	60	100	4
ESC	NCS4102	Basics of Artificial Intelligence	3	0	0	40	60	100	3
CCC	NHSCC1101	Communicative English	2	1	0	40	60	100	3
ESC	NEE4151	Basic Electrical Engineering Lab	0	0	2	40	60	100	1
BSC	NBS4153	Engineering Chemistry Lab	0	0	2	40	60	100	1
ESC	NME4153	Engineering Graphics Lab	0	0	2	40	60	100	1
	Tot	11	3	6	280	420	700	17	

SEMES	TER II								
rse yory.	Code Tire Code Tire Code Tire Code			ontac Hours		Eva	aluation	Scheme	Credits
Course			L	Т	Р	CIA	ESE	Course Total	
BSC	NBS4201	Differential Equations and Fourier Analysis	3	1	0	40	60	100	4
ESC	NCS4201	Programming Concepts with Python	3	0	0	40	60	100	3
ESC	NCS4251	Python Programming Lab	0	0	2	40	60	100	1
Stude	nts need to s 'A' or G								
	NGP4201 General Proficiency					100		100	1
	7	6	1	2	220	180	400	9	

Note: Students who have selected group 'A' in the first semester will select group 'B' in the second semester and vice-versa.

GROUP	GROUP 'A'											
rse yory	Course			ontac Hours		Eval	uation S	Scheme	:			
Course	Code	Code Title	L	Т	Р	CIA	ESE	Course Total	Credits			
BSC	NBS4202	Engineering Physics	3	1	0	40	60	100	4			
ESC	NME4201	Engineering Mechanics	3	1	0	40	60	100	4			
ESC	NEC4201	Basic Electronics Engineering	3	0	0	40	60	100	3			
CCC	NBSCC1201	Environment & Ecological Sustainability	3	0	0	40	60	100	3			
ESC	NME4251	Engineering Mechanics Lab	0	0	2	40	60	100	1			
ESC	NME4252	Workshop Practices	0	0	2	40	60	100	1			
BSC	NBS4252	Engineering Physics Lab	0	0	2	40	60	100	1			
	To	otal	12	2	6	280	420	700	17			

GROUP	' 'B'								
se ory				ontac Hours		Eva	aluation	Scheme	
Course	Course Code	Code Title	L	Т	Р	CIA	ESE	Course Total	Credits
ESC	NEE4201	Basic Electrical Engineering	3	1	0	40	60	100	4
BSC	NBS4203	Engineering Chemistry	3	1	0	40	60	100	4
ESC	NCS4202	Basics of Artificial Intelligence	3	0	0	40	60	100	3
CCC	NHSCC1201	Communicative English	2	1	0	40	60	100	3
ESC	NEE4251	Basic Electrical Engineering Lab	0	0	2	40	60	100	1
BSC	NBS4253	Engineering Chemistry Lab	0	0	2	40	60	100	1
ESC	NME4253	Engineering Graphics Lab	0	0	2	40	60	100	1
	Tot	11	3	6	280	420	700	17	

SEMES	SEMESTER III											
se ory	Course		Con	tact I	lours	Ev	aluation	Scheme				
Course	Code	Code Title	L	т	P	CIA	ESE	Course Total	Credits			
HSC	NHS4301/ NHS4302	Organizational Behavior /Industrial Sociology	2	0	0	40	60	100	2			
BSC	NBS4301	Complex Analysis and Integral Transforms	3	1	0	40	60	100	4			
PCC	NAI4302	Artificial Intelligence in Mechanical Engineering Systems	3	1	0	40	60	100	4			
PCC	NCS4301	Discrete Mathematics	3	0	0	40	60	100	3			
PCC	NCS4302	Data Structure using 'C'	3	1	0	40	60	100	4			
ESC	NCS4303	Digital Logic Design	3	0	0	40	60	100	3			
PCC	NCS4352	Data Structure Lab	0	0	2	40	60	100	1			
ESC	NCS4353	Digital Logic Design Lab	0	0	2	40	60	100	1			
CQAC	NVC4301	Indian Constitution*	1	0	0	40	60	100	1			
	NGP4301	General Proficiency	-	-	-	100	-	100	1			
	•	Гotal	460	540	1000	24						

SEMES	TER IV	1							_
rse Jory				Contac Hours		Eva	luation	Scheme	
Course Category	Course Code	Code Title	L	т	P	CIA	ESE	Course Total	Credit
HSC	NHS4402/ NHS4401	Industrial Sociology/ Organizational Behavior	2	0	0	40	60	100	2
BSC	NBS4401	Statistical and Numerical Techniques	2	1	0	40	60	100	3
PCC	NAI4401	Concepts of Machine Learning With Python	3	0	0	40	60	100	3
PCC	NCS4401	Database Management Systems	3	1	0	40	60	100	4
PCC	NCS4402	Operating Systems	3	1	0	40	60	100	4
PCC	NCS4404	Computer Organization & Architecture	3	1	0	40	60	100	4
PCC	NAI4451	Machine Learning Lab	0	0	2	40	60	100	1
PCC	NCS4451	Database Management Systems Lab	0	0	2	40	60	100	1
CQAC	NCC4451	NSS/YOGA*	0	0	2	100	-	100	1
	NGP4401	General Proficiency	-	-	-	100	-	100	1
Compulsory	Qualifying Audit Co					T			Т
		otal	16	4	6	520	480	1000	24

se			Cont	act Ho	ours	Eva	luation S	Scheme		
Course Category	Course Code	Code Title	L	Т	P	CIA	ESE	Course Total	Credits	
HSC	NHS4501	Engineering & Managerial Economics	3	0	0	40	60	100	3	
PCC	NAI4501	Concepts of Data Science with Python	2	1	0	40	60	100	3	
PCC	NAI4502	Artificial Neural Network	3	0	0	40	60	100	3	
PCC	NCS4503	Computer Networks	3	0	0	40	60	100	3	
PCC	NCS4504	Automata Theory and Formal Languages	3	1	0	40	60	100	4	
PCC	NAI4551	Data Science with Python Lab	0	0	2	40	60	100	1	
PCC	NAI4552	Artificial Neural Network Lab	0	0	2	40	60	100	1	
PCC	NCS4553	Computer Networks Lab	0	0	2	40	60	100	1	
SPIC	NAI4554	Minor Project-I	0	0	2	100	0	100	1	
CQAC	NVC4501	Essence of Indian Knowledge Tradition*	1	0	0	40	60	100	1	
	NGP4501	General Proficiency	-	-	-	100	-	100	1	
* Compulsory	Total			2	8	560	540	1100	22	

*	Compulsory	Qualifying	Audit Course
---	------------	------------	--------------

SEMES [®]	TER VI								
se ory			Conta	act Ho	ours	Eva	luation S	cheme	
Course Category	Course Code	Code Title	L	Т	Р	CIA	ESE	Course Total	Credits
HSC	NHS4601	Industrial Management	3	0	0	40	60	100	3
PEC	-	Professional Elective Course-I	3	0	0	40	60	100	3
PCC	NCS4602	Design & Analysis of Algorithms	3	1	0	40	60	100	4
PCC	NCS4604	Compiler Design	3	1	0	40	60	100	4
PEC	-	Professional Elective Course-II	3	0	0	40	60	100	3
PCC	NCS4652	Algorithms Lab	0	0	2	40	60	100	1
PCC	NCS4654	Compiler Design Lab	0	0	2	40	60	100	1
SPIC	NAI4651	Seminar	0	0	2	100	0	100	1
SPIC	NAI4653	Minor Project-II	0	0	2	100	0	100	1
	NGP4601	General Proficiency	-	-	-	100	-	100	1
	То	tal	15	2	8	580	420	1000	22

Note: The students need to undergo a 4 to 6 weeks of industrial training that will be evaluated in the VII Semester.

SEMES	TER VII									
Cour se			Cont	entact Hours Evaluation Scheme		Scheme				
Categ ory	Course Code	Code Title	L	Т	P	CIA	ESE	Course Total	Credits	
PCC	NAI4701	Natural Language Processing	3	1	0	40	60	100	4	
PCC	NAI4702	Fuzzy Logic	2	1	0	40	60	100	3	
PEC	-	Professional Elective Course III	3	0	0	40	60	100	3	
OE	-	Open Elective I*	3	1	0	40	60	100	4	
PCC	NAI4751	Natural Language Processing Lab	0	0	2	40	60	100	1	
SPIC	NAI4753	Major Project I#	0	0	4	100	0	100	2	
SPIC	NAI4754	Industrial Training Evaluation	0	0	2	100	0	100	1	
	NGP4701	General Proficiency	-	-	-	100	-	100	1	
	Total 11 3 8 500 300 800 19									

^{*}Students will opt any one of the open elective from the list of open electives provided by the university.

^{*}Students need to submit an abstract for the project, select a guide and will complete the literature review related to the project.

SEMES	TER VIII									
Cour			Contact Hours			Eva	luatior			
Categ ory	Course Code	Code Title	L	Т	Р	CIA	ESE	Course Total	Credits	
PCC	NAI4801	Concepts of Deep Learning	3	0	0	40	60	100	3	
PEC	-	Professional Elective Course IV	3	0	0	40	60	100	3	
OE	-	Open Elective II**	3	1	0	40	60	100	4	
SPIC	NAI4853	Major Project II##	0	0	16	160	240	400	8	
	NGP4801	General Proficiency	-	-	-	100	-	100	1	
	Total			1	16	380	420	800	19	

**The opted subject should be different from the one selected in VII Semester.

**This is in continuation with the project work started in Semester VII. In this semester the students will formulate the methodology do experimentation and show the results. Finally all project work will be presented in a report i.e. Project Report.

Legends:

- L Number of Lecture Hours per week
- T Number of Tutorial Hours per week
- P Number of Practical Hours per week
- CIA Continuous Internal Assessment
- ESE End Semester Examination

Category of Courses:

- BSC Basic Science Courses
- CCC Co-Curricular Courses
- ESC Engineering Science Courses
- PEC Professional Elective Course
- GP General Proficiency
- HSC Humanities and Social Science Courses
- OE Open Elective
- PCC Professional Core Courses
- SPIC Seminar/ Project/ Internship/ Community Services
- CQAC Compulsory Qualifying Audit Course

List of Open Electives Offered by the Department of Computer Science and Engineering

S.N.	Course Code	Open Elective	Credit
1	OE43211	Database Administration	4
2	OE43221	Computational Intelligence	4

List of Vocational Courses Offered by the Department of Computer Science and Engineering

S. N.	Course Code	Vocational Courses	Credit
1	NVC43241	Programming with Python	2
2	NVC43242	Artificial Intelligence	2
3	NVC43243	Cyber Crime and Computer Forensics	2
4	NVC43244	Meta-verse and Virtual Reality	2

List of Professional Elective Courses

Course Code	Professional Elective Course I							
NPEC43911	Robotics and Intelligent System							
NPEC43912	Introduction to Unmanned Aerial Vehicles							
NPEC43913	Sentiment Analysis							
NPEC43914	Internet of Things							

Course Code	Professional Elective Course II
NPEC43921	Cyber Law and Security
NPEC43922	Computer Vision
NPEC43923	Recommender Systems
NPEC43924	Block Chain Technology

Course Code	Professional Elective Course III
NPEC43931	System Modeling & Simulation
NPEC43932	Embedded System Design
NPEC43933	Evolutionary Multi-objective Optimization
NPEC43934	Bioinformatics

Course Code	Professional Elective Course IV
NPEC43941	Cloud Computing
NPEC43942	Data Mining and Ware Housing
NPEC43943	Introduction to Drones
NPEC43944	Computer Forensics

BABU BANARASI DAS UNIVERSITY

School of Engineering (School Code: 04)

List of Open Electives for the Department of Computer Science and Engineering

S. No.	Course Name	Course Code								
	Open Elective-I									
1 Disaster Management OE43101										
2	Non-Conventional Energy Resources	OE43302								
	Open Elective-II									
3	Quality Management	OE43501								
4	Concepts of Climate Smart Agriculture	OE43102								

Program	B. Tech CSE (AI)										
Year	I	Semester I									
Course Name	Computer Concepts and Programming in C										
Code	NCS4101	NCS4101									
Course Type	ESC	L	Т	P	Credit						
Pre-Requisite	Fundamentals of computer	3									
Course Objectives	 To learn the fundamentals of computer. Understand the various steps in programme development. Study the syntax and semantics of C programming language. To learn the usage of structured programming approach in solving problems. 										
Course Outcom	es										
CO1	Develop simple algorithms for arithmetic and logical problems.										
CO2	To translate the algorithms to programs & execution (in C language) and also implement conditional branching, iteration and recursion.										
CO3	To decompose a problem into functions and synthesize a complete Program using divides and conquers approach.										
CO4	Study the use of arrays, pointers an Programs.	d structu	res to dev	velop algo	orithms and						

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to components of a computer system: Memory, processor, I/O Devices, storage, operating system, Concept of assembler, compiler, interpreter, loader and linker. Idea of Algorithm: Representation of Algorithm, Flowchart, and Pseudo code with examples, From algorithms to programs, source code. Programming Basics: Structure of C program, writing and executing the first C program, Syntax and logical errors in	30 Hours	CO1
	compilation, object and executable code. Components of C language. Standard I/O in C, Fundamental data types, Variables and memory locations, Storage classes.		

2	Arithmetic expressions and precedence: Operators and expression using numeric and relational operators, mixed operands, type conversion, logical operators, bit operations, assignment operator, operator precedence and Associativity. Conditional Branching: Applying if and switch statements, nesting if and else, use of break and default with switch. Iteration and loops: use of while, do while and for loops, multiple loop variables, use of break and continue statements. Functions: Introduction, types of functions, functions with array, passing parameters to functions, call by value, call by reference, recursive functions. Arrays: Array notation and representation, manipulating array elements, using multi-dimensional arrays. Character arrays and strings, Structure, union, enumerated data types, Array of structures, Passing arrays to functions.	30 Hours	CO2, CO3
3	Pointers: Introduction, declaration, applications, Introduction to dynamic memory allocation (malloc, calloc, realloc, free), Use of pointers in self-referential structures, notion of linked list (no implementation). File handling: File I/O functions, Standard C preprocessors, defining and calling macros, command-line arguments	30 Hours	CO4

- 1. Problem Solving and Program Design in C, by Jeri R. Hanly, Elliot B. Koffman, Pearson Addison-Wesley, 2006.
- 2. Computer Concepts and Programming in C, E Balaguruswami, McGraw Hill
- 3. The C programming by Kernighan Brain W. and Ritchie Dennis M., Pearson Education .
- 4. Computer Fundamentals and Programming in C. Reema Thareja, Oxford Publication
- 5. Computer Concepts and Programming in C by Vikas Gupta, Wiley India Publication

- 1. https://youtu.be/-wv-OERJK3M
- 2. https://nptel.ac.in/courses/106104074

PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	1		2								1	2
CO2	2	3	1	1									2	2
CO3	1	3	2	2	2								1	2
CO4	1	1	2	1	1								1	1

Program	B. Tech CSE (AI)									
Year	I	Sem	ester	I						
Course Name	Programming in C Lab									
Code	NCS4151									
Course Type	ESC L T P Credit									
Pre-Requisite	Basic knowledge of C	0	0	2	1					
Course Objectives	 Formulate problems and implement algorithms using C programming language. Learn memory allocation techniques using pointers. Learn memory allocation techniques using pointers Use structured programming approach for solving of computing problems in real world. 									
Course Outcom	es									
CO1	Understand the concept of basics of	f C, data	types and	d variable	S.					
CO2	Understand the concept of operator statements and looping statements.	s, preced	lence of o	perators,	conditional					
CO3	Explore the concept of strings, fund differences between call by value a	-			and					
CO4	Understand the concept of file hand methods and real time applications	_	ctions, se	arching a	nd sorting					

S. No.	List of Experiments	Mapped CO
1	WAP that accepts the marks of 5 subjects and finds the sum and percentage marks obtained by the student.	CO1,2
2	WAP that swaps values of two variables using a third variable.	CO 1,2
3	WAP to find the greatest of three numbers.	CO1,2
4	WAP that finds whether a given number is even or odd.	CO1,2
5	WAP that takes two operands and one operator from the user and perform the operation and prints the result by using Switch statement.	CO2,3
6	WAP to find the factorial of a given number.	CO3,4
7	WAP that simply takes elements of the array from the user and finds the sum of these elements.	CO2,3,4
8	WAP to search an element in a array using Linear Search.	CO2,3,4
9	WAP to add and multiply two matrices of order nxn.	CO2,3,4
10	WAP to implement strlen (), strcat (), strcpy () using the concept of Functions.	CO2,3,4

- **1.** Byron Gottfried, "Programming with C", Schaum's Outlines Series, McGraw Hill Education, 3 rd Edition, 2017.
- 2. E. Balagurusamy, "Programming in ANSI C", McGraw Hill Education, 6th Edition, 2012.
- 3. Yashavant Kanetkar, "Exploring C", BPB Publishers, 2nd Edition, 2003.
- **4.** Schildt Herbert, "C: The Complete Reference", Tata McGraw Hill Education, 4th Edition, 2014

- 1. https://ps-iiith.vlabs.ac.in/
- $2. \quad \text{https://www.vlab.co.in/ba-nptel-labs-computer-science-and-engineering} \\$

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO 6	PO7	PO8	PO9	PO1 0	PO11	PO1 2	PSO1	PSO2
CO1	1				2								1	1
CO2	1	2	2										2	2
CO3	2	2	2	2	2						1	2	2	2
CO4	1	2	2	2	2						2		2	2

Program	B. Tech CSE (AI)									
Year	Ι	Semester I/II								
Course Name	Engineering Mechanics									
Code	NME4101/NME4201	NME4101/NME4201								
Course Type	ESC	L	T	P	Credit					
Pre-Requisite	Physics	3	1	0	4					
Course Objectives	2. To calculate the reactive forces a3. To know the geometric properties	 To apply laws of mechanics to actual engineering problems. To calculate the reactive forces and analyse the structures. To know the geometric properties of the different shapes. To understand the elastic properties of different bodies. 								
Course Outcom	es									
CO1	Solve the engineering problems in the problems involving dry friction		equilibri	um condi	tions & solve					
CO2	Calculate the reaction forces a determinate structures.	and forc	es in n	nembers	of statically					
CO3	Determine the centroid and momen	it of inert	ia of vari	ous plane	surfaces.					
CO4	To find out the stress, strain and ela	astic prop	perties of	different	bodies.					

Module	Course Contents	Contact Hrs.	Mapped CO
1	Two Dimensional Concurrent Force Systems: Basic concepts, Laws of motion, Principle of Transmissibility of forces, Transfer of a force to parallel position, Resultant of a force system, Simplest Resultant of Two dimensional concurrent Force systems Two dimensional Non-concurrent Force systems Resultant of Two dimensional Non-concurrent Force systems, Distributed force system, free body diagrams, Equilibrium and Equations of Equilibrium, Applications.	30 Hours	CO1
2	Beam: Introduction, Types of support, Types of load on beam, Types of beam, Reactions from supports of beam. Friction: Introduction, Laws of Coulomb Friction, Equilibrium of Bodies involving Dry friction, Belt friction, Application.	30 Hours	CO2
3	Trusses: Introduction, Perfect, Deficient, and Redundant truss, Solution of Simple truss by Method of Joints. Centroid and Moment of Inertia: Introduction, Centroid of plane figure and composite figure, Moment of inertia of plane area, Parallel Axes Theorem & Perpendicular axes theorem, Moment of inertia of composite bodies.	30 Hours	CO3
4	Kinematics and Kinetics: Linear motion, D'Alembert principle, Impulse and momentum principle, Work and energy principle. Simple Stress and Strain: Normal and Shear stresses, Stress- Strain Diagrams for ductile and brittle material, Elastic Constants, One Dimensional Loading of members of varying cross-sections.	30 Hours	CO4

- 1. Engineering Mechanics by S.S. Bhavikatti, K.G. Rajashekarappa, New Age Publications.
- 2. A textbook of Engineering Mechanics by Dr. R.K. Bansal, Laxmi Publications.
- **3.** Engineering Mechanics by Irving H. Shames. Prentice-Hall.

- 1. https://nptel.ac.in/courses/112106286
- 2. https://archive.nptel.ac.in/courses/112/106/112106286/

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO 6	PO7	PO8	PO9	PO1 0	PO11	PO1 2	PSO1	PSO2
CO1	3	3	3	2	2									
CO2	3	2	2	3	3									
CO3	1	2	3	2	3									
CO4	2	2	2	2	2									

Program	B. Tech CSE (AI)										
Year	Ι	Sem	ester	I/II							
Course Name	Basic Electronics Engineering										
Code	NEC4101/NEC4201	NEC4101/NEC4201									
Course Type	ESC	L	T	P	Credit						
Pre-Requisite	Knowledge of Physics & Maths	3	0	0	3						
Course Objectives	2. Comprehensive idea about basic3. Fundamental principles of Opera	 Comprehensive idea about basic electronics devices like Diodes, BJT Comprehensive idea about basic electronics devices like JFET. Fundamental principles of Operational Amplifier and its application To have an idea about Digital electronics and principle of communication. 									
Course Outcom	es										
CO1	Understanding the fundamentals Rectifier and Clippers.	of elec	tronic c	ircuits li	ke Diode as						
CO2	Analysing the fundamentals of elec	etronic de	evices lik	e BJT and	l JFET.						
CO3	Evaluate the Number system, Bool	ean algeb	ora, logic	gates, Ka	rnaugh map.						
CO4	Understanding the principles of Op	erational	Amplifi	er and its	application						

Module	Course Contents	Conta ct Hrs.	Mapped CO
1	DIODES Energy band theory, Semiconductor material, Mass action law, PN junction: Forward and Reverse Bias characteristics, Diode as Rectifier: Half wave and Full wave Rectifiers, Clippers: Series Clippers, Breakdown Mechanism: Zener & Avalanche breakdown, Zener Diode and its application, Light Emitting Diode(LED).	30 Hours	CO1
2	TRANSISTORS Construction of Bipolar Junction Transistor: PNP and NPN, Working of Transistor, Base-Width modulation (Early Effect), Thermal Runaway BJT configurations: CE, CB and CC, Input & Output characteristics of CB & CE configuration, Biasing: Fixed bias, Emitter bias, Potential divider bias, Collector feedback Configuration, Comparison of biasing circuits. Transistor Amplifying Action. JFET: Basic construction and characteristics, Concept of pinch off, maximum drain saturation current, Input and transfer characteristics, Biasing: Self bias, fixed bias and Voltage divider bias.	30 Hours	CO2
3	OPERATIONAL AMPLIFIER AND DIGITAL ELECTRONICS: Introduction to OP-AMP, Equivalent Circuit and Pin diagram of Op-amp IC741, Characteristics of ideal OP-AMP, Input Offset Current, Input Bias Current, Basics of ideal and practical OP-AMP, Configurations: Open loop and closed loop, Applications of OP-AMP, Inverting amplifier, Non-inverting amplifier, Voltage follower, summing amplifier, Difference Amplifier, Integrator and Differentiator. Principle of feedback, Concept of positive and Negative feedback. Number System, Complements, Subtraction of binary number using 1's and 2's Complements, Excess 3 code, Gray	30 Hours	CO3, CO4

Code (Cyclic Code), Boolean Algebra: Basic Theorems and De Morgan Theorems, Standard logic gates, Universal Logic	
Gates, Implementation of Boolean function using Basic gates	
and Universal gates.	

- **1.** Robert L. Boylestad and Louis Nashelsky Electronic Devices and Circuit Theory, Pearson India.
- **2.** Kennedy, Electronic Communication System, TMH
- 3. M. Morris Mano, Digital Logic and Computer Design, PHI

- 1. https://onlinecourses.nptel.ac.in/noc21_ee55/preview
- 2. https://archive.nptel.ac.in/courses/122/106/122106025/

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	1	1	1									
CO2	1	1	1	1	1									
CO3	1	1	3	3	3									
CO4	1	2	1	1	3									

Program	B. Tech CSE (AI)									
Year	Ι	Sem	ester	I/II						
Course Name	Engineering Mechanics Lab									
Code	NME4151/NME4251	NME4151/NME4251								
Course Type	ESC	L	T	P	Credit					
Pre-Requisite	Intermediate School Education	0	0	2	1					
Course Objectives	 To gain the practical knowledge of equilibrium and non-equilibrium conditions. To perform experimental analysis of Torsion tese. To apply the practical knowledge of finding bendinding moment of simply-supported and cantilever beam. 									
Course Outcom	es									
CO1	Able to understand the behaviour of impact load condition.	of metals	under ter	sion, con	npression and					
CO2	To gain the practical knowledge of different hardness testing methods.		ion effect	on mater	rial using					
CO3	To apply the role of friction in lifting	To apply the role of friction in lifting and lowering of loads.								
CO4	To analyse the effect of load in def	lection fo	or simply	supporte	d beam.					

S. No.	List of Experiments	
1	To conduct the tensile test and determine the ultimate tensile strength,	CO1
1	percentage elongation for a steel specimen.	
2	To conduct the Impact-tests (Izod) on Impact-testing machine to find the	CO1
	toughness.	
3	To conduct the Impact-tests (Charpy) on Impact-testing machine to find the	CO1
3	toughness.	
4	To determine the compression test and determine the ultimate compressive	CO1
4	strength for a Specimen.	
5	Friction experiment(s) on inclined plane and/or on screw-jack.	CO3
6	Worm & worm-wheel experiment for load lifting.	CO3
7	Bending of simply-supported and cantilever beams for theoretical &	CO4
/	experimental deflection.	
8	Statics experiment on equilibrium.	CO2
9	Belt-Pulley experiment.	CO3
10	Torsion of rod/wire experiment.	CO4

1. https://www.vlab.co.in/broad-area-mechanical-engineering

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	2	3	2	3	3									
CO 2	3	2	2	2	2									
CO 3	3	2	3	3	2									
CO 4	2	3	2	2	3									

Program	B. Tech CSE(AI)								
Year	I	Sem	ester	I/II					
Course Name	Workshop Practices								
Code	NME4152/NME4252	NME4152/NME4252							
Course Type	ESC	ESC L T P Credit							
Pre-Requisite	Intermediate School Education	0	0	2	1				
Course Objectives	 To gain the practical knowledge of making male-female join, lap and butt join, half lap corner joint etc. To perform experimental analysis of upsetting, drawing down, punching, bending etc. in black smithy shop. To apply the practical knowledge of making Plane turning, Step turning, Taper turning, Threading, Grinding in machine shop. 								
Course Outcom	es								
CO1	To apply practical knowledge of m and fitting shop.	aking dif	ferent ty	pes of join	nt in carpentry				
CO2	Able to gain the practical knowledge and punching of metals.	ge of ben	ding, ups	setting, dr	awing down				
CO3	To understand knowledge of joinin methods.	g of meta	als using	various w	velding				
CO4	To Study of machine tools and ope Taper turning, Threading, grinding			turning, S	Step turning,				

S. No.	List of Experiments	Mapped CO
1	Carpentry Shop: Study of tools & operations and carpentry joints, Simple exercise using jack plane, to prepare half-lap corner joint, mortise & tennon joints, Simple exercise on wood working lathe.	CO1
2	Fitting Bench Working Shop: Study of tools & operations, Simple exercises involving fitting work, Make perfect male-female joint, Use of drills/taps.	CO1
3	Black Smithy Shop: Study of tools & operations, Simple exercises base on black smithy operations such as upsetting, drawing down, punching, bending, fullering & swaging.	CO2
4	Welding Shop: Study of tools & operations of Gas welding & Arc welding, Simple butt and Lap welded joints, Oxy-acetylene flame cutting.	CO3
5	Sheet-metal Shop: Study of equipment & operations, Making Funnel complete with 'soldering', Fabrication of tool-box, tray, electric panel box etc.	CO2
6	Machine Shop: Study of machine tools and operations, Plane turning, Step turning, Taper turning, Threading, Grinding of turning equipment.	CO4
7	Foundry Shop: Study of tools & operations, Pattern making, Mould making with the use of a core, Method of material pouring and Casting.	CO4

1. https://cgpit-bardoli.edu.in/engineering-graphics-eg-lab/

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	3	2	3	2							1		
CO 2	3	3	3	3	3							1		
CO 3	3	2	3	3	2							1		
CO 4	2	3	2	2	3							1		

Program	B. Tech CSE(AI)	B. Tech CSE(AI)							
Year	I	Sem	ester	I/II					
Course Name	Basic Electrical Engineering								
Code	NEE4101/NEE4201								
Course Type	ESC	L	Т	P	Credit				
Pre-Requisite	Intermediate with PCM	3	1	0	4				
Course Objectives	 This course provides comprehe The subject gives the knowledge Subject gives the knowledge ab electrical circuits. Other logical working principle instruments. 	ge about on the a	combinat nalysis a	ional circ nd design	uits. of new				
Course Outcom	es								
CO1	To understand basic theorem of el		Ü	C					
CO2	To understand the basic concepts	Č							
CO3	To explain the working principle, machines & measuring instrum-	construct ents.	tion, appl	ications c	of DC & AC				
CO4	To gain knowledge about the fund devices.	amentals	of electi	ric compo	nents,				

Module	Course Contents	Contact Hrs.	Mappe d CO
1	Electric Circuit: Introduction to linear and nonlinear circuits, circuit elements, various sources and source transformation, Star delta transformation, solution of D.C. circuits using Kirchhoff's laws- Mesh Analysis and Nodal Analysis, Signal wave forms, Passive elements specifications. Basic theorems: Thevenin, Norton, Maximum Power, Superposition, Millman's Theorem, Tellegen's Theorem applied to DC networks.	30 Hours	CO1, CO2
2	A. C. Circuits: A.C. voltage and currents, average and r.m.s. values, Form factor and peak factor, Phasor representation of sinusoidal quantities, phasor in polar, rectangular and exponential forms. Analysis of single phase series, parallel and series-parallel circuits, Active & reactive and apparent power, p.f., Voltamperes, frequency response and Q-factor. Analysis of balanced three phase a.c. circuits, Introductory concept, voltage, current and power in three phase balanced circuits. Star-delta connections. Measurement of three phase power by Wattmeter Method.	30 Hours	CO2
3	Measuring Instruments & Electromagnetic and Transformer: Types of instruments, construction, working principles & applications, PMMC, MI, Single phase dynamometer, Ammeter, Voltmeter, Wattmeter, Induction type Energy meter, Use of shunt and multiplier. Magnetic circuit concept, B-H curves characteristics of magnetic materials, Practical magnetic circuits. Magnetic circuits with D.C. and A.C. excitation, Hysteresis and eddy current losses, Magnetic force. Self and mutual inductances, Faraday's laws, Lenz's Law,	30 Hours	CO3

	Statically and dynamically induced emfs, Energy stored in magnetic fields. Principle of Transformer operation, emf equation, Equivalent circuit of transformer, Losses and efficiency, Introduction of Auto Transformer and its applications.		
4	Electrical Machines: Basic concepts of rotating electric machines, DC machines (motor and generator), working principle, types, EMF and torque equations characteristics and application of DC motor. Three phase induction motors, types, principle of operation, applications. Single phase induction motors, principle of operation, starting methods, applications. Synchronous machines (motor and generator), principle of operation and applications.	30 Hours	CO4

- 1. Fundamental of Electric Circuits' by Charles K Alexander and Matthew N.O. Sadiku, Tata McGraw Hill Publication.
- 2. Electrical Engineering Fundamentals' by Vincent Del Toro, PHI Publication.
- 3. Basic Electrical Technology' by Kothari and I.J. Nagrath, Tata McGraw Hill.

- 1. https://archive.nptel.ac.in/courses/108/108/108108076/
- 2. https://nptel.ac.in/courses/108105112
- 3. https://archive.nptel.ac.in/courses/108/105/108105112/
- 4. https://archive.nptel.ac.in/courses/108/104/108104139/

	Course Articulation Matrix													
PO-PSO	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	2									
CO2	3	3	3	3	3									
CO3	3	1	2	1	2	3								
CO4	2	2	2	2	1	2								

Program	B Tech CSE(CCML)	B Tech CSE(CCML)								
Year	I	Sem	ester	I/II						
Course Name	Basics of Artificial Intelligence									
Code	NCS4102/NCS4202									
Course Type	ESC	L	Т	P	Credit					
Pre-Requisite	Basic Knowledge of computer 3 0 0									
Course Outcom	 Study of historical perspectives of AI and its foundations. Understanding the fundamental principles of AI. Study of advanced AI techniques; like soft computing and nature inspired computing. Understanding different AI approaches like problem solving, inference, perception, knowledge representation and learning. 									
Course Outcom										
CO1	Demonstrate fundamental under intelligence (AI) and its foundation	_	of the	history	of artificial					
CO2	Apply basic principles of AI in inference, perception, knowledge re				- 1					
CO3	Demonstrate advanced AI techni inspired computing	ques; lil	ke soft	computing	g and nature					
CO4	Demonstrate awareness and a applications of AI techniques.	fundamer	ntal und	erstanding	g of various					

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to Artificial Intelligence (AI): definition, foundation and history of AI, types of AI, intelligent agents, structure of intelligent agents, introduction to soft computing, introduction and operations on fuzzy sets, nature inspired computing and algorithms.	30 Hours	CO1
2	AI terminologies & basic concepts, searching for solutions, search strategies: informed and uninformed, local and global search algorithms for optimistic problems, adversarial search, searching techniques for games, Alpha Beta pruning.	30 Hours	CO2

3	Knowledge representation and reasoning, propositional logic, theory of first order logic, inference mechanism in first order logic, forward and backward chaining, probabilistic reasoning, utility theory, Bayesian Networks.	30	CO3,
3	Applications and future of Artificial Intelligence, ethical issues, impact of AI on public life: understanding application of AI in Healthcare, Gaming, Finance, Data Security, Social Media, Travel & Transport, Automotive Industry, Robotics, AI in Entertainment, Agriculture, E-	30 Hours	CO4
	commerce and Education.		

- 1. Stuart Russell and Peter Norvig, Artifcial Intelligence: A Modern Approach, Pearson Education, Inc., 2010.
- 2. Nils J. Nilsson, "Artificial Intelligence: A new Synthesis", Harcourt Asia Pvt. Ltd., 2000.
- 3. Elaine Rich and Kevin Knight, "Artificial Intelligence", Tata McGraw-Hill, 2003.
- **4.** George F. Luger, "Artificial Intelligence-Structures and Strategies For Complex Problem Solving", Pearson Education / PHI, 2002.
- 5. F. O. Karry, C. D. Silva, Soft Computing and Intelligent Systems Design, Pearson, 2009.

- 1. https://onlinecourses.nptel.ac.in/noc21_ge20/preview
- 2 https://www.youtube.com/@IITDelhiJuly

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO12	PSO 1	PSO2
CO1	2	2	1									2	2	
CO2	2	2	1									2	2	
CO3	2	2	1									2	2	
CO4	2	2	1									2	2	

Program	B. Tech CSE(AI)										
Year	I Semester I/II										
Course Name	BASIC ELECTRICAL ENGINEER	RING LA	AΒ	•							
Code	NEE4151/NEE4251										
Course Type	SC L T P Credit										
Pre-Requisite	INTERMEDIATE WITH PCM	NTERMEDIATE WITH PCM 0 0 2 1									
Course Objectives	D.C. circuits.2. Fundamental understanding o concepts.3. Understanding three-phase ac three-phase system.	 Fundamental understanding of Transformer, AC and DC circuit concepts. Understanding three-phase ac circuit devices for measurement and a three-phase system. 									
Course Outcom	es										
CO1	To have basic knowledge of variou	s electric	al equipi	ment.							
CO2	To Understand the concept of Netw	ork The	orems an	ıd D.C Cir	cuits.						
CO3	Know about concept of Three Phas	e AC Cii	rcuits and	d three ph	ase system.						
CO4	Study and application of AC and D	C Machi	nes.								

S. No.	List of Experiments	Mapped CO
1	Study of Electrical Equipment used in daily life.	CO1
2	Transistor input-output characteristic.	CO1
3	Full wave rectifier circuit using diodes.	CO2
4	Verification of KCL & KVL.	CO2
5	Verification of Thevenin's theorem & Norton's theorem.	CO2
6	Verification of Superposition theorem.	CO2
7	Measurement of active power in 3 -phase circuit using TWO wattmeter methods.	CO3
8	Study of dc shunt motor speed control using (1) Armature control (2) Field Control.	CO4
9	Measurement of load test and Calculating efficiency of DC Machine.	CO4
10	Determination of equivalent circuit parameters of a single phase transformer by O.C. and S.C. tests and estimation of voltage regulation and efficiency at various loading conditions and verification by load test.	CO4

Virtual Lab Source:

- 1. https://ems-iitr.vlabs.ac.in/exp/lab-equipment-familiarization/
- 2. https://vlab.amrita.edu/?sub=3&brch=110&sim=245&cnt=526
- **3.** http://vlabs.iitkgp.ernet.in/be/exp7/index.html
- **4.** https://vlab.amrita.edu/?sub=1&brch=75&sim=217&cnt=1
- **5.** http://vlabs.iitkgp.ernet.in/asnm/index.html#
- **6.** http://vlabs.iitkgp.ernet.in/asnm/index.html#
- 7. http://vlabs.iitkgp.ernet.in/asnm/exp7/index.html
- **8.** https://em-coep.vlabs.ac.in/exp/speed-control-dc-motor/index.html
- **9.** https://em-coep.vlabs.ac.in/exp/load-test-dc-motor/
- **10.** https://ems-iitr.vlabs.ac.in/exp/circuit-parameters-oc-test/index.html

	Course Articulation Matrix														
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO															
CO1	3	2	3	1	3								1	2	
CO2	3	2	3	2	2								1	2	
CO3	3	3	2	3	3								2	1	
CO4	3	2	3	2	2							·	1	2	
CO5	3	3	2	1	2				·			·	2	1	

Program	B. Tech CSE (AI)										
Year	I Semester I/II										
Course Name	Engineering Graphics Lab										
Code	NME4153/NME4253										
Course Type	ESC L T P Credit										
Pre-Requisite	Intermediate School Education	0	0	2	1						
Course Objectives	 To gain the practical knowledge of different types of line and different type of projection. To draw the projection of point on VP & HP and projection of line like line inclined to one plane, inclined with the plane, true length and true inclination. To understand the use of Computer aided drafting in engineering graphics design. 										
Course Outcom	es										
CO1	Able to gain the knowledge of type first and third angle projection.	s of proj	ection, or	rthographi	ic projection,						
CO2	To understand the projection of line different positions	es, Planes	s like circ	cle and po	lygons in						
CO3	To draw Isometric scale, Isometric orthographic drawing.	axes, Iso	metric P	rojection	from						
CO4	Able to understand the software's bline, circle, polygon, polyhedron, c		nmands o	f drafting	entities like						

S. No.	List of Experiments	Mapped CO
1 1.	Scales : Representative factor, plain scales, diagonal scales, scales of chords.	CO1
2 2.	Projection : Types of projection, orthographic projection, first and third angle projection.	CO1
3.	Projection of points: The principle of orthographic projections of a point on HP and VP, Conventional representation, Projection of a point in all the quadrants.	CO1
4 4.	Projection of Lines: Line inclined to one plane, inclined with both the plane, True Length and True Inclination, Traces of straight lines.	CO2
5. 5	Projection of planes and solids : Projection of Planes like circle and polygons in different positions; Projection of polyhedrons like prisms, pyramids and solids of revolutions like cylinder, cones in different positions.	CO2
6 6.	Section of Solids: Section of right solids by normal and inclined planes; Intersection of cylinders.	CO3
7 7.	Isometric Projections: Isometric scale, Isometric axes, Isometric Projection from orthographic drawing.	CO3
8.	·	CO3
9.	Computer Aided Drafting (CAD)- I: Introduction, benefit, software's basic commands of drafting entities like line, circle, polygon, polyhedron, cylinders.	CO4
10	Computer Aided Drafting (CAD)- II: Transformations and editing commands like move, rotate, mirror, array; solution of projection problems on CAD.	CO4

1. https://cgpit-bardoli.edu.in/engineering-graphics-eg-lab/

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	3	3	2								
CO2	2	2	3	2	2	3						1		
CO3	3	2	3	3	3	2						1		
CO4	3	3	3	2	3	2						1		

Program	B. Tech CSE(AI)										
Year	I Semester II										
Course Name	Programming Concepts with Python										
Code	NCS4201										
Course Type	ESC	ESC L T P Credit									
Prerequisite	Basic Knowledge of computer fundamentals and Programming Concepts. 3 0 0 3										
Course Objectives	 To have a strong foundation on Python Programming. Develop analytical ability on different real world situations. Easy mapping and respective conversion of real world problems to Python programs. Capability to work with large amounts of data for analytical purposes using Python. 										
Course Outcomes											
CO1	Understand and write simple Python programs.										
CO2	Analysis of conditions in a problem and implement it in a pro	ogram.									
СО3	Development of Python blocks using functions and data stru	ctures and thei	r evaluation usir	ng function calls.							
CO4	Apply input/output with files in Python for secondary storag problems.	e management	and to apply OC	OPs concepts for	analysis of real world						

Module	Course Contents	Contact Hrs.	Mapped CO
	Introduction and Conditional Statements:		
	Programming Cycle for Python, Python IDE, Interacting with Python Programs, Elements of Python,		
	Type Conversion.		
1	Basics: Expressions, Assignment Statement, Arithmetic Operators, Operator Precedence, Boolean	30 Hours.	CO1
1	Expression.	30 Hours.	COI
	Conditionals:		
	Conditional statement in Python (if-else statement, its working and execution), Nested-if statement and		
	Elif statement in Python, Expression Evaluation & Float Representation.		
	Loop , Function and Strings:		
	Loops:		
	Purpose and working of loops, While loop including its working, For Loop, Nested Loops, Break and		
	Continue.		
	Function:		
2	Parts of A Function, Execution of A Function, Keyword and Default Arguments, Scope Rules.	30 Hours.	CO2
	Strings: Length of the string and perform Concatenation and Repeat operations in it, Indexing and		
	Slicing of Strings.		
	Python Data Structure:		
	Tuples, Unpacking Sequences, Lists, Mutable Sequences,		
	List Comprehension, Sets, Dictionaries.		
	Sieve Of Eratosthenes & File I/0:		
	Sieve of Eratosthenes:		
	Generate prime numbers with the help of an algorithm given by the Greek Mathematician named		
	Eratosthenes, whose algorithm is known as Sieve of Eratosthenes.		
	File I/O:		
3	File input and output operations in Python Programming.	30 Hours.	CO3/CO4
	Exceptions and Assertions Modules:		
	Introduction, Importing Modules.		
	Abstract Data Types:		
	Abstract data types and ADT interface in Python Programming.		
	Classes:		

Class definition and other operations in the classes, Special Methods (such as init, str, comparison	
methods and Arithmetic methods etc.), Class Example, Inheritance, Inheritance and OOP.	

- $1. Allen\ B.\ Downey, "Think\ Python: How\ to\ Think\ like\ a\ Computer\ Scientist",\ 2nd\ edition,\ Updated\ for\quad Python\ 3,\ Shroff/O`Reilly\ Publishers,\ 2016.$
- $\textbf{2.} Guido\ van\ Rossum\ and\ Fred\ L.\ Drake\ Jr,\ \textbf{--} An\ Introduction\ to\ Python\ -- Revised\ and\ updated\ for\ Python\ 3.2,\ Network\ Theory\ Ltd.,\ 2011.$
- 3.John V Guttag —Introduction to Computation and Programming Using Python", Revised and expanded Edition, MIT Press, 2013.

- 1. https://nptel.ac.in/courses/106106145
- 2. https://onlinecourses.swayam2.ac.in/cec22_cs20/preview

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	2	1	3							1	1	1
CO2	3	2	2	2	3							2	2	2
CO3	3	3	2	2	3							2	2	2
CO4	3	2	2	2	3							2	2	2

Program	B.Tech: CSE (AI)										
Year	I	Semeste	er	II							
Course Name	Python Programming Lab										
Code	NCS4251										
Course Type	ESC	L	T	P	Credit						
Pre-Requisite		0	0	2	1						
Course Objectives	 Describe the core syntax and semantics of Python programming language. Illustrate the process of structuring the data using lists, dictionaries, tuples, strings and sets. Discover the need for working with the functions, modules and packages. Infer the Object-oriented Programming concepts in Python. Familiarize the advanced concepts like regular expressions, date and time. Able to handle abnormal termination of the python scripts 										
Course Outcom	es										
CO1	Interpret the fundamental Python syntax and semantics and able to solve, test and debug python programs										
CO2	Fluency in the use of Python control flow statements and determine the methods to create and manipulate Python programs by utilizing the data structures like lists, dictionaries, tuples, strings and sets										
CO3	Express proficiency in the handling of functions, modules, packages and handle abnormal termination of the programs.										
CO4	Articulate the Object-Oriented Programming concepts such as encapsulation, inheritance and polymorphism as used in Python.										

S. No.	List of Experiments					
1	To write a Python program to compute the GCD of two numbers.					
2	To write a Python program to find the most frequent words in a text file.					
3	To write a python program find the square root of a number (Newton's method).					
4	To write a python program exponentiation (power of a number).					
5	To write a python program find the maximum of a list of numbers.					
6	To write a python program to perform Matrix Multiplication.					
7	To write a python program linear search.	CO3				
8	To write a python program Binary search.	CO2				
9	To write a python program selection sort.	CO4				
10	To write a python program merge sort.	CO4				

- 1. https://pythoniitk.vlabs.ac.in/
- $2. \quad \text{https://www.vlab.co.in/participating-institute-iit-kanpur} \\$

Course Articulation Matrix														
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO 6	PO7	PO8	PO9	PO1 0	PO11	PO1 2	PSO1	PSO2
CO1	2	2	3		1								1	1
CO2	2	2	2	2	2								1	2
CO3	2	1	3	3	1								2	1
CO4	2	2	2	2	1								1	1

Program	B. Tech CSE (AI)									
Year	II	Semo	ester	III						
Course Name	Artificial Intelligence in Mechanica	al Engine	ering Sy	stem						
Code	NAI4302									
Course Type	PCC	CC L T P Credit								
Pre-Requisite	Intermediate School Education	3	1	0	4					
Course Objectives	Engineering system. 2. To Study about Mechanical Eng 3. To learn how to Apply AI in Me	 To learn how Artificial Intelligence (AI) works in Mechanical Engineering system. To Study about Mechanical Engineering system. To learn how to Apply AI in Mechanical Engineering system. To understand the application of AI in Mechanical Engineering system. 								
Course Outcom	es									
CO1	To analyses the usefulness of A systems.	AI systen	n for M	Iechanical	Engineering					
CO2	To understand designing, selec Mechanical Engineering systems.	tion and	l applic	ation AI	system for					
CO3	To apply the knowledge base Engineering systems.	o apply the knowledge base system and software in Mechanical								
CO4	To understand the application A systems.	I in sele	ection N	lechanical	Engineering					

Module	Course Contents	Contact Hrs.	Mapped CO
1	Definition of Artificial Intelligence, Mechanical Engineering System, Types of Mechanical Engineering Systems (MES), Machine learning (ML), Artificial Intelligence and Mechanical Engineering, Benefits of AI for Mechanical Engineering systems. Application of AI in MES.	30 Hours	CO1
2	Basic Elements of an Automated System, Control Systems, Advanced Automation Functions, Levels of Automation, Sensors, Actuators, Analog–Digital Conversions, Input/output Devices for Discrete Data, Contact Input/output Interfaces.	30 Hours	CO2
3	Expert System, Definition, Structure Characterization Knowledge Sources, Expert Knowledge Acquisition, Expert System software for Mechanical Engineering application in CAD, CAPP, MRP, Adaptive Control. Robotics, Process control. Typical cases for ML in Mechanical Engineering, Human-like machine vision, Adaptive control for process optimization.	30 Hours	СОЗ
4	Application of Artificial Intelligence in Thermal Engineering, Artificial Intelligence in Additive Manufacturing, Artificial Intelligence in 3D printing, Application of Artificial Intelligence in Manufacturing.	30 Hours	CO4

- **1.** Artificial Intelligence in Mechanical and Industrial Engineering Edited By Kaushik Kumar Divya Zindani J. Paulo Davim.
- **2.** Artificial Intelligence: Implications for Cim (Artificial Intelligence in Industry) by Andrew Kusiak.

3. R. J. Schalkoff, "Artificial Intelligence - an Engineering Approach", McGraw Hill Int. Ed., Singapore, 1992.

- 1. https://www.digimat.in/nptel/courses/video/112103280/L01.html
- **2.** https://youtube.com/playlist?list=PLp6ek2hDcoNB_YJCruBFjhF79f5ZHyBuz

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	3	3	2								2	1
CO2	3	3	2	2	3						2		1	2
CO3	3	2	3	3	2						1	3	2	2
CO4	2	3	2	2	2						2	2	2	1

Program	B. Tech CSE (AI)										
Year	II	Sem	ester	III							
Course Name	Discrete Mathematics	Discrete Mathematics									
Code	NCS4301										
Course Type	PCC	PCC L T P Credit									
Pre-Requisite	Basics knowledge of functions and set theory										
Course Objectives	theoretical computer science. 2. Investigate functions as relations 3. Investigate use of Groups, Rings	 To introduce Discrete Mathematical Structures (DMS) used in theoretical computer science. Investigate functions as relations and their properties Investigate use of Groups, Rings, Fields & Lattice Investigate proportional logic and relations for problem solving 									
Course Outcom	es										
CO1	Explore application of Set The Numbers	ory, Rel	ations,]	Functions	& Natural						
CO2	To apply the basic principles Alge	braic Stru	ıctures								
CO3	To analyse the simple mathematica	l proofs l	by logic a	and relation	ons						
CO4	To introduce Generating function a	nd Comb	oinatorics	3							

Module	Course Contents	Contact Hrs.	Mapped CO
1	Set Theory, Relations, Functions & Natural Numbers Set Theory: Introduction, Combination of sets, Multisets, Ordered pairs, Proofs of some general identities on sets. Relations: Definition, Operations on relations, Properties of relations, Composite Relations, Equality of relations, Recursive definition of relation, Order of relations. Functions: Definition, Classification of functions, Operations on functions, Natural Numbers: Introduction, Mathematical Induction, Induction with Nonzero Base cases, Proof Methods, Proof by contradiction.	30 Hours	CO1
2	Groups, Rings, Fields & Lattice Algebraic Structures: Definition, Groups, Subgroups and order, Cyclic Groups, Cosets, Lagrange's theorem, Normal Subgroups, Definition and elementary properties of Rings and Fields, Integers Modulo n; Partial order sets: Definition, Partial order sets, Combination of partial order sets, Hasse diagram. Lattices: Definition, Properties of lattices, Bounded, Complemented, Modular, Complete lattice	30 Hours	CO2
3	Proposition Logic Propositional Logic: Proposition, well-formed formula, Truth tables, Tautology, Satisfiability; Contradiction; Algebra of proposition; Theory of Inference; Predicate Logic: First order predicate-well- formed formula of predicate, quantifiers, Inference theory of predicate logic. Recurrence Relation & Combinatorics Recurrence Relation & Generating function: Recursive definition of functions, Recursive algorithms, Method of solving recurrences. Combinatorics: Introduction; Counting Techniques: Pigeonhole Principle	30 Hours	CO3, CO4

- 1. Kenneth H. Rosen, "Discrete Mathematics and Its Applications", McGraw-Hill
- 2. R.P. Grimaldi, "Discrete and Combinatorial Mathematics", Addison Wesley.
- **3.** Jean Paul Trembley, R Manohar, "Discrete Mathematical Structures with Application to Computer Science," McGraw-Hill.

- **1.** https://archive.nptel.ac.in/courses/106/108/106108227/
- **2.** https://archive.nptel.ac.in/courses/106/105/106105192/

	Course Articulation Matrix													
PO- PSO	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO10	PO1 1	PO12	PSO1	PSO2
CO1	3	1	3	2									3	
CO2	3	1	3	1									1	
CO3	3	1	3	2									2	
CO4	2	1	2	2									3	

Program	B. Tech CSE(AI)									
Year	II	Sem	ester	III						
Course Name	Digital Logic Design	Digital Logic Design								
Code	NCS4303	NCS4303								
Course Type	ESC	ESC L T P Credit								
Pre-Requisite	Basic of computer fundamentals	3	0	0	3					
Course Objectives	 Able to design and analyse com Able to design and analyse sequence To reinforce theory and technique 	3. Able to design and analyse sequential logic circuits.								
Course Outcom	es									
CO1	Define different number systems complement representation and open				· .					
CO2	Understand the different switching logic functions.	g algebra	a theoren	ns and ap	oply them for					
CO3	Define the Karnaugh map for a fe reduction of logic functions and co				n algorithmic					
CO4	Understand sequential circuits, li perform simple projects with them.		ers and	shift reg	isters, and to					

Module	Course Contents	Contact Hrs.	Mapped CO
1	Digital Design and Binary Numbers: Binary Arithmetic, Negative Numbers and their Arithmetic, Floating point representation, Binary Codes, Cyclic Codes, Error Detecting and Correcting Codes, Hamming Codes. Min term and Max term Realization of Boolean Functions, Gate-level minimization: The map method up to four variable, don't care conditions, SOP and POS simplification, NAND and NOR implementation, Quine Mc - Cluskey Method (Tabular method).	30 Hours	CO1
2	Combinational Logic: Combinational Circuits, Analysis Procedure, Design Procedure, Binary Adder-Subtractor, Code Converters, Parity Generators and Checkers, Decimal Adder, Binary Multiplier, Magnitude Comparator, Decoders, Encoders, Multiplexers, Hazards and Threshold Logic. Memory and Programmable Logic Devices: Semiconductor Memories, RAM, ROM, PLA, PAL, Memory System design.	30 Hours	CO2, CO4
3	Synchronous Sequential Logic: Sequential Circuits, Storage Elements: Latches, Flip Flops, Analysis of Clocked Sequential circuits, state reduction and assignments, design procedure. Registers and Counters: Shift Registers, Ripple Counter, Synchronous Counter, Other Counters. Asynchronous Sequential Logic: Analysis procedure, circuit with latches, design procedure, reduction of state and flow table, race free state assignment, hazards.	30 Hours	CO3

- 1. Donald D. Givone, "Digital Principles and Design", Tata MCGraw Hill.
- 2. Marcovitz: Introduction to logic Design, Tata Mcgraw-hill Education (India) Pvt. Ltd.
- 3. Raj Kamal, ||Digital Systems Principle and Design||, Pearson Education.
- 4. Balbaniam, Carison, ||Digital Logic Design Principles||, Wiley Publications.
- **5.** R.P. Jain, —Modern Digital Electronics, McGraw Hill.

- 1. https://nptel.ac.in/courses/106105185
- 2. https://nptel.ac.in/courses/108106177

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO2
CO1	3	1	1	2	2									
CO2	2	2	2	1	2									
CO3	2	1	2	1	2									
CO4	3	2	2	2	3									

Program	B. Tech CSE (AI)										
Year	II	Sem	ester	III							
Course Name	Data Structure Using 'C'	Data Structure Using 'C'									
Code	NCS4302										
Course Type	PCC L T P Credit										
Pre-Requisite	Fundamentals of computer knowledge 3 1 0 4										
Course Objectives	 To introduce the basis and advanced data structures To understand various data operations performed on in data structures To understand various sorting and searching techniques in data structures To analyse the performance of data structures algorithms 										
Course Outcom	es										
CO1	Understand the applications of d implement algorithms for the crea sorting of each data structure.										
CO2	Apply knowledge of underlying problems and programming.										
CO3	Analyse the application of data struordered and unordered data.	ictures fo	r storage	and retric	eval of						
CO4	Understanding the graph representa	ation and	traversa	[

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction Introduction: Basic Terminology, Data types and its classification, Algorithm complexity notations like big Oh, Time- Space trade-off. Abstract Data Type (ADT). Array: Array, Definition, Representation and Analysis of Arrays, Single and Multidimensional Arrays, Address calculation, Array as Parameters, Sparse Matrices, Recursion- definition and processes, simulating recursion, Backtracking, Recursive algorithms, Tail recursion, Removal of recursion, Tower of Hanoi.	30 Hours	CO1
2	Stack and Linked List Stack, Array Implementation of stack, Linked Representation of Stack, Application of stack: Conversion of Infix to Prefix and Postfix Expressions And Expression evaluation, Queue, Array and linked implementation of queues, Circular queues, D-queues and Priority Queues. Linked list, Implementation of Singly Linked List, Two-way Header List, Doubly linked list, Linked List in Array. Generalized linked list, Application: Garbage collection and compaction, Polynomial Arithmetic.	30 Hours	CO2
3	Tree, Searching, Sorting and Hashing Trees: Basic, terminology, Binary Trees, algebraic Expressions, Complete Binary Tree, Extended Binary Trees, Array and Linked Representation of Binary trees, Traversing Binary trees, Threaded Binary trees, Binary Search Tree(BST), AVL Trees, B-trees. Application: Algebraic Expression, Huffman coding Algorithm. Internal and External sorting, Insertion Sort, Bubble Sort, selection	30 Hours	CO3

	sort, Quick Sort, Merge Sort, Heap Sort, Radix sort, Searching Hashing: Sequential search, binary search, Hash Table, Hash Functions, Collision Resolution Strategies, Hash Table Implementation. Symbol Table, Static tree table, Dynamic Tree table.		
4	Graphs Graphs: Terminology, Sequential and linked Representations of Graphs: Adjacency Matrices, Adjacency List, Adjacency Multi-list, Graph Traversal: Depth First Search and Breadth First Search, Connected Component, Spanning Trees, Minimum Cost Spanning Trees: Prims and Kruskal algorithm. Transitive Closure and Shortest Path algorithm: Warshall Algorithm and Dijkstra Algorithm.	30 Hours	CO4

- 1. Aaron M. Tenenbaum, Yedidyah Langsam and Moshe J. Augenstein, "Data Structures Using C and C++", PHI, 2000.
- 2. Horowitz and Sahani, "Fundamentals of Data Structures", Galgotia Publication, 1982.
- 3. Jean Paul Trembley and Paul G. Sorenson, "An Introduction to Data Structures with Applications", McGraw-Hill, 1984
- 4. R. Kruse Et Al, "Data Structures and Program Design in C", Pearson Education, 2006
- 5. Lipschutz, "Data Structures", Schaum's Outline Series, TMH, 2014
- 6. GAV Pai, "Data Structures and Algorithms", TMH, 2009

Online Resources

1. https://archive.nptel.ac.in/courses/106/102/106102064/

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO 3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	1										1	
CO2	1	1	2										1	
CO3	2	1	2										1	
CO4	2	2	2										1	

Program	B.Tech CSE (AI)									
Year	II Semester III									
Course Name	Data Structure Lab									
Code	NCS4352									
Course Type	PCC L T P Credit									
Pre-Requisite	Basic knowledge of C language	0	0	2	1					
Course	 Understand various data representations. Implement linear and non-linear 			s in the re	eal world.					
Objectives	3. Analyze various algorithms bas	3. Analyze various algorithms based on their time and space complexity.								
Course Outcon	nes									
CO1	Understand the concept of data structure problems like Sorting, searching, in		11.	_						
CO2	Understand linear data structures fo data.	r process	ing of ore	dered or u	inordered					
CO3	Explore various operations on dynacircular linked list and doubly linked		structure	s like sing	gle linked list,					
CO4	Understand the binary search trees, and its resolution methods	hash fund	ction, and	l concepts	s of collision					

S. No.	List of Experiments	Mapped CO
1	Implementation of List using Dynamic memory Allocation.	CO1
2	Implementation of Queue.	CO1
3	Implementation of Searching and Sorting Algorithms.	CO1
4	Array implementation of Stack.	CO2
5	Array implementation of Queue.	CO2
6	Array implementation of Circular Queue.	CO2
7	Array implementation of List	CO2
8	Implementation of Stack	CO3
9	Implementation of Circular Queue	CO3
10	Implementation of Tree Structures	CO4
11	Implementation of Binary Tree.	CO4
12	Implementation of Tree Traversal.	CO4
13	Implementation of Binary Search Tree.	CO4
14	Implementation of Insertion in BST.	CO4
15	Implementation of Deletion in BST.	CO4
16	Graph Implementation, BFS.	CO4
17	Graph Implementation, DFS.	CO4
18	Graph Implementation, Minimum cost spanning tree.	CO4
19	Graph Implementation, shortest path algorithm.	CO4

- $\textbf{1.} \ \, \textbf{https://cse01-iiith.vlabs.ac.in/}$
- $\textbf{2.} \ \mathsf{https://cse.iitkgp.ac.in/} \verb|^rkumar/pds-vlab/index1.html| \\$

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO 6	PO7	PO8	PO9	PO1 0	PO11	PO1 2	PSO1	PSO2
CO1	2	1	2	2	1								1	1
CO2	2	2	1	1										
CO3	2	2	2	3	2									
CO4	2	3	2	2	1								1	1

Program	B. Tech CSE (AI)										
Year	II Semester III										
Course Name	Digital Logic Design Lab										
Code	NCS4353										
Course Type	ESC	ESC L T P Credit									
Pre-Requisite	Basic knowledge of Hardware Devices										
Course Objectives	 To study the basic of various numbinary. To study the combinational logic of their realization. To study the sequential logic circumodes. To study some of the programmat switching functions. 	design of s	various lo	ogic and sw	ritching devices and s and asynchronous						
Course Outcom	es										
CO1	Understand various types of number	er system	s and the	eir convers	sions.						
CO2	Design and implement variety of loconcepts.										
CO3	Demonstrate and compare the construction of programmable logic devices and different types of ROM.										
CO4	Analyze sequential circuits like Re	gisters ar	nd Count	ers using	flip-flops.						

S. No.	List of Experiments	Mapped CO
1	Verification, Simplification and Realization of Boolean Expressions using	CO1
1	Logic gates/Universal gates.	
2	Realization of Binary to Gray code conversion and vice versa.	CO1
3	Realization of Half/Full adder and Half/Full Subtractors using logic gates.	CO2
4	Realization of parallel adder/Subtractors using 7483 chips.	CO2
5	BCD to Excess-3 code conversion and vice versa.	CO1
6	MUX/DEMUX-use of 74153, 74139 for arithmetic circuits and code converter.	CO2
7	Realization of One/Two-bit comparator and study of 7485 magnitude comparator.	CO3
8	Truth table verification of Flip-Flops: a. JK Master slave (ii) T type (iii) D type	CO4
9	Realization of 3-bit counters as a sequential circuit and MOD–N counter design (7476, 7490, 74192, 74193)	CO4
	Perform Shift left; Shift right, SIPO, SISO, PISO, PIPO operations using	CO4
10	74S95.	
11	Wiring and testing of Ring counter/Johnson counter	CO4
12	Wiring and testing of Sequence generator.	CO2

- https://cse15-iiith.vlabs.ac.in/
 https://nptel.ac.in/courses/117106086

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	3	2	1									
CO2	2	2	3	2										
CO3			3											
CO4	3	2	3	2										

Program	B.TECH: CSE/CSE-AI/CSE-CCM	L/CSE-I	OTBC						
Year	II Semester III/IV								
Course Name	INDIAN CONSITUTION								
Code	NVC4301/NVC4401								
Course Type	CQAC	L	T	P	Credit				
Pre-Requisite	The basic knowledge of Indian Constitutions								
Course Objectives	 To realise the significance of c walks of life and help them to constitution. To Know the need To identify the importance of fuduties. To understand the functioning in Indian federal system To learn procedure and effects of election commission and ame 	understa and impo indament of Union of emerge	nd the bactance of all rights. State a ency, cor	asic conce f protecting as well as and Local apposition	epts of Indian ng traditional s fundamental Governments				
Course Outcom	es								
CO1	Understand the concept of Indian c	onstitutio	on.						
CO2	Identify the powers and functions of	of Supren	ne Court	and High	court.				
СОЗ	Analyse the role Governor and Chi	Analyse the role Governor and Chief Minister.							
CO4	Explain the district administration	role and i	mportan	ce.					

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to Indian Constitution Constitution meaning of the term - The making of the Indian Constitution - Sources and constitutional history - Philosophy of Constituent Assembly - Citizenship, Preamble, Fundamental Rights and Duties, Directive Principles of State Policy. Union Government and its Administration Structure: President and Vice President: Role, power and position, PM and Council of ministers, Cabinet and Central Secretariat, LokSabha, RajyaSabha, The Supreme Court and High Court: Powers and Functions.	30 Hours	CO1, CO2
2	The States and The Union Territories State Government and its Administration: Governor - Role and Position - CM and Council of ministers, State Secretariat: Organisation, Structure and Functions – Relation between the Union and the States. Local Administration District's Administration Head - Role and Importance, Municipalities - Mayor and role of Elected Representative – Pachayati Raj: Functions PRI: Zilla Panchayat, Elected officials and their roles - Block level Organizational Hierarchy, Village level - Role of Elected and Appointed officials - Importance of grass-root democracy	30 Hours	CO3, CO4

- **1.** Durga Das Basu, Introduction to the Constitution of India, Prentice Hall of India Pvt.Ltd.. New Delhi
- 2. SubashKashyap, Indian Constitution, National Book Trust
- 3. J.A. Siwach, Dynamics of Indian Government & Politics
- **4.** D.C. Gupta, Indian Government and Politics
- 5. H.M.Sreevai, Constitutional Law of India, 4th Edition, Universal Law Publication.

Online Resources

1. https://onlinecourses.nptel.ac.in/noc20_lw03/preview

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		2					2	3	1	2		3	1	
CO2		3					1	2	3	2		1	2	
CO3		1					2	2	2	1		2	1	
CO4		2					1	3	2	2		2	2	

Program	B.Tech CSE(AI)									
Year	II Semester IV									
Course Name	Concepts of Machine Learning with Python									
Code	NAI4401									
Course Type	PCC L T P Credit									
Pre-Requisite	Programming Knowledge of Python	3	0	0	3					
Course Objectives	 Acquire knowledge of setting hy Applying suitable machine learn Evaluate the performance of machine learn Identify and integrate more than performance of learning. 	ing techi chine lea	niques forning.	or problems						
Course Outcom	es									
CO1	Understanding machine learning str	rategies,	hypothe	sis testing	and python.					
CO2	Understanding and Appling Superv	rised lear	ning tecl	nniques.						
CO3	Understanding and Appling Unsup	ervised I	Learning	techniques	5					
CO4	Understanding and Appling probab techniques	ilistic an	d Ensem	ble Learni	ng					

Module	Course Contents	Contact Hrs.	Mappe d CO
1	Introduction to Machine Learning Introduction, Examples of various Learning Paradigms, Perspectives and Issues, Version Spaces, Finite and Infinite Hypothesis Spaces, PAC Learning, VC Dimension. Machine Learning using Python Introduction to python; basic library; functions of library; implementation of library; Design, Analysis and Evaluation of Machine Learning Experiments, Other Issues: Handling imbalanced data sets.	30 Hours	CO1
2	Supervised Learning Algorithms Learning a Class from Examples, Linear, Non-linear, Multi-class and Multi-label classification, Decision Trees: ID3, Classification and Regression Trees (CART), Regression: Linear Regression, Multiple Linear Regression, Logistic Regression. Advanced Supervised Learning Neural Networks: Introduction, Perceptron, Multilayer Perceptron, Support vector machines: Linear and Non- Linear, Kernel Functions, K- Nearest Neighbors Ensemble Learning Ensemble Learning Model Combination Schemes, Voting, Bagging: Random Forest Trees, boosting: Adaboost, Stacking.	30 Hours	CO2
3	Unsupervised Learning Introduction to clustering, Hierarchical: AGNES, DIANA, Partitional: K-means clustering, K-Mode Clustering, Self-Organizing Map, Expectation Maximization, Gaussian Mixture Models, Principal Component Analysis (PCA), Locally Linear Embedding (LLE), Factor Analysis Probabilistic Learning Bayesian Learning, Bayes Optimal Classifier, Naïve Bayes	30 Hours	CO3, CO4

Classifier, Bayesian Belief Networks, Mining, Frequent Patterns		
---	--	--

- 1. Ethem Alpaydin,"Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition 2014
- 2. Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar "Foundations
- 3. of Machine Learning", MIT Press, 2012.
- 4. Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 1997.
- 5. Charu C.Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014.
- 6. Stephen Marsland, "Machine Learning An Algorithmic Perspective",2nd Edition, CRC Press, 2015.
- 7. Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012
- 8. Jiawei Han and Micheline Kamber and Jian Pei, "Data Mining Concepts and Techniques", 3rd Edition, Morgan Kaufmann Publications, 2012.
- 9. Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, "Mathematics for Machine Learning", Cambridge University Press, 2019.

- 1. https://onlinecourses.nptel.ac.in/noc19_cs52/preview
- 2. https://nptel.ac.in/courses/106106139

PO- PSO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	PSO1	PSO2
CO1	2	2	1	2	3								3	3
CO2	3	3	3	2		1							2	1
CO3	2	3	2	3		1							1	2
CO4	3	3	3	3		1							2	1

Program	B. Tech CSE	B. Tech CSE									
Year	II	Sem	ester	IV							
Course Name	Database Management System	Database Management System									
Code	NCS4401										
Course Type	PCC L T P Credit										
Pre-Requisite	Fundamentals of computer	1	0	4							
Course Objectives	 To introduce the basics of Database Management System Understanding the fundamental relational system, data model. Understanding the fundamental of architecture, and manipulations. To develop Understanding of Transaction Processing System, Concurrency control, and Recovery procedures in database. 										
Course Outcom	es										
CO1	Understand terms related to database	se design	and mar	agement.							
CO2	Constructing conceptual data mode	1.									
CO3	Understand the functional depende	ncies, no	rmalizati	on and us	ing SQL						
CO4	Understand and applying issues of control	transactio	on proces	ssing and	concurrency						

Module	Course Contents	Contact Hrs.	Mapped CO
1	Database System Concepts, Database Users, and Architecture Introduction to Database System with example, Characteristics of the Database Approach, Users of Database System, Advantages and disadvantages of Using a DBMS, Implications of the Database Approach, Data Models, Schemas, and Instances, DBMS Architecture and Data Independence, Database Languages and Interfaces, The Components of Database System, Classification of Database Management Systems	30 Hours	CO1
2	Data Modelling & Relational Database Management System Data Modelling Using the Entity-Relationship Model, concepts, notation for ER diagram, mapping constraints, keys, Concepts of Super Key, candidate key, primary key, Entity Types, Entity Sets, and Attributes, Relationships, Relationship Types, Roles, and Structural Constraints, Strong vs Weak Entity Types, ER Diagrams, Naming Conventions, and Design Issues, Enhanced Entity-Relationship Modelling, Subclasses, Super classes, and Inheritance, Specialization and Generalization, Constraints and Characteristics of Specialization and Generalization, Modelling of UNION Types Using Categories, The Relational Data Model, Relational Constraints, and the Relational Algebra, Relational Model Concepts, Relational Constraints and Relational Database Schemas, Update Operations and Dealing with Constraint Violations, Basic Relational Algebra Operations, Additional Relational Operations, Examples of Queries in Relational Algebra	30 Hours	CO2
3	SQL and Database Design Theory and Methodology Structured Query Language- The Relational Database Standard, Data Definition, Constraints, and Schema	30 Hours	CO3

		1	
	Changes in SQL, Types of SQL Commands, SQL Operators		
	and their Procedure, Insert, Delete, and Update Statements		
	in SQL, Queries and Subqueries, Aggregate Functions,		
	Joins, Unions, Intersection, Minus, Views (Virtual Tables)		
	in SQL, Cursors, Triggers and PL/SQL, Functional		
	Dependencies and Normalization for Relational Databases,		
	Informal Design Guidelines for Relation Schemas,		
	Functional Dependencies, Normal Forms Based on Primary		
	Keys, General Definitions of Second and Third Normal		
	Forms, Boyce-Codd Normal Form, Multivalued		
	Dependencies and Fourth Normal Form, Join		
	Dependencies and Fifth Normal Form		
	Transaction Processing, Concurrency Control and		
	Database Recovery		
	Transaction Processing Concepts, Introduction to		
	Transaction Processing, Transaction states and State		
	Diagram, Transaction and System Concepts, Desirable		
	Properties of Transactions, Schedules and Recoverability,		
	Serializability of Schedules, Concurrency Control		
	Techniques, Locking Techniques for Concurrency Control,		
4	Concurrency Control Based on Timestamp Ordering,		
	Multiversion Concurrency Control Techniques, Validation		
	(Optimistic) Concurrency Control Techniques, Granularity	20	
	of Data Items and Multiple Granularity Locking, Database	30	GO 4
	Recovery Techniques, Recovery Concepts, Recovery	Hours	CO4
	Techniques Based on Deferred Update, Recovery		
	Techniques Based on Immediate Update, Shadow Paging,		
	The ARIES Recovery Algorithm, Database Backup and		
	Recovery from Catastrophic Failures		

- 1. Data base System Concepts, Silberschatz, Korth, McGraw hill, Sixth Edition.
- 2. Fundamentals of Database Systems, Elmasri Navathe Pearson Education.
- **3.** Data base Management Systems, Raghurama Krishnan, Johannes Gehrke, TATA McGrawHill 3rd Edition.

- 1. https://onlinecourses.nptel.ac.in/noc22_cs51/preview
- **2.** https://www.udemy.com/topic/database-management/

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	1										1	1
CO2	2	2	2		2								2	2
CO3	2	1	3		2								2	2
CO4	2	2	2		3								2	2

Program	Program B. Tech CSE									
Year	II	Sem	ester	IV						
Course Name	Operating Systems									
Code	NCS4402									
Course Type	PCC L T P Credit									
Pre-Requisite	Basic Knowledge of Computer System. 3 1 0									
Course Objectives	 Understand the structure and functions of OS and analyse Processes, Threads and Scheduling algorithms. Analyse O.S concepts that include architecture mutual exclusion algorithms, deadlock detection algorithms and agreement. Understand the principles of concurrency and Deadlocks. Analyse various memory management schemes. Study I/O management and File systems. 									
Course Outcom	es									
CO1	Understanding of the concepts, st about Processes, Threads and Sche		_		and Learning					
CO2	Understand the principles of concu	rrency ar	d Deadlo	ock.						
CO3	Evaluate various memory managen	nent sche	mes.							
CO4	Analyse and Implement a prototype	e file syst	tem.							

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to Operating System and Process Concept Operating system and functions, Classification of Operating systems, Operating System Structure, Operating System Services, System call and System program, Process concept, Process state, Process control block, Context switching, Operation on process, Threads and their management, Benefits of multithreading, Types of threads, Threading issues, CPU-scheduling, Scheduling criteria, Scheduling Algorithms, Concurrent Processes, Inter Process Communication models and Schemes	30 Hours	CO1
2	Process Synchronization and Deadlock Process synchronization, Producer/Consumer Problem, Critical Section Problem, Peterson's solution, Synchronization of hardware, Semaphore, Classical-problem of synchronization, Deadlock, Deadlock characterization, Deadlock Prevention, Deadlock Avoidance, Resource allocation graph algorithm, Banker's algorithm, Deadlock detection, Recovery from deadlock	30 Hours	CO2
3	Memory Management Memory Management, Multiprogramming with fixed partitions, Multiprogramming with variable partitions, Paging, Segmentation, Paged segmentation, Virtual memory concepts, Demand paging, Performance of demand paging, Page replacement algorithms, Thrashing	30 Hours	CO3
4	I/O Management and File System File System Structure, File System Implementation, Directory Implementation and Allocation Methods, Free space Management, Kernel I/O Subsystems, Disk Structure, Disk Scheduling, Disk Management, Swap-Space	30 Hours	CO4

Management	

- 1. Silberschatz, Galvin and Gagne, "Operating Systems Concepts", Wiley Publication
- 2. Sibsankar Halder and Alex A Aravind, "Operating Systems", Pearson Education
- 3. Harvey M Dietel, "An Introduction to Operating System", Pearson Education
- 4. D M Dhamdhere, "Operating Systems: A Concept-based Approach", TMH
- 5. William Stallings, "Operating Systems: Internals and Design Principles", Pearson Education

- 1. https://onlinecourses.nptel.ac.in/noc21 cs72/preview
- 2. https://www.coursera.org/specializations/codio-introduction-operating-systems

						Cou	rse Artic	ulation M	Iatrix					
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	1	2	3							1	1	
CO2	2	3	2	1	1								1	2
CO3	2	2	1	1	2							2	2	1
CO4	2	1	2	3	2								1	

Program	B. Tech CSE (AI)									
Year	II	Sem	ester	IV						
Course Name	Computer Organization & Architecture									
Code	NCS4404									
Course Type	PCC	L	T	P	Credit					
Pre-Requisite	Knowledge of Digital Logic Design 3 1 0 4									
Course Objectives	system. 2. To understand how computer are 3. Ability to analyse memory host/performance.	 To understand how computer are constructed by a set of functional units. Ability to analyse memory hierarchy and its impact on computer cost/performance. Analyzing fundamental issues in architecture design and their impact on 								
Course Outcom	es									
CO1	Identify the basic structure and fun	ction uni	t of a dig	ital comp	outer.					
CO2	Understanding and analyze the effe	ect of add	lressing r	nodes and	d instructions					
CO3	Understanding Control Unit and A	LU								
CO4	Understanding Interrupts and I/O									

Module	Course Contents	Contact Hrs.	Mapped CO
1	Computer Evolution & Arithmetic A Brief History of computers: Von Neumann Architecture, Hardware Architecture, Computer Components, Interconnection Structures, Bus Interconnection, Register Transfer Language, Bus and Memory Transfers, Bus Architecture, Bus Arbitration Techniques, Arithmetic Logic, Shift Micro operation, Arithmetic Logic Shift Unit, Arithmetic Algorithms (Addition, subtraction, Booth Multiplication, Division).	30 Hours	CO1
2	Control Unit Control Design: Hardwired & Micro Programmed, Performing of arithmetic or logical operations, Multiple Bus organization, Hardwired Control, Micro programmed control, Microinstruction, Micro program sequencing, Wide-Branch addressing, Microinstruction with Next-address field, Prefetching, Microinstruction, Pipeline control: Instruction pipelines, Pipeline performance.	30 Hours	CO2
3	Processor Organization and Input-Output Organization Processor Design: General register organization, Stack organization, Addressing mode, Instruction format, Data transfer & manipulations, Program Control, Reduced Instruction Set, Computer Memory Organization: Basic concept and hierarchy, semiconductor RAM memories,2D&2 1/2D memory organization, ROM memories, Cache memories, Concept and design issues & performance, Address mapping and replacement, Auxiliary memories: Magnetic disk, Magnetic tape and optical disks, Virtual memory, Concept implementation.	30 Hours	CO3

	Interrupts		
4	Interrupt hardware, Types of interrupts and exceptions, Modes of Data Transfer: Programmed I/O, Interrupt initiated I/O, Direct Memory Access: I/O channels and processors, Serial Communication: Synchronous & asynchronous communication, Standard communication interfaces	30 Hours	CO4

- 1. Patterson, "Computer Organization and Design", Elsevier Publication.
- 2. Vravice, Hmacher & Zaky, "Computer Organization", TMH.
- 3. Moris Mano,"Computer System Architecture", PHI.
- 4. John P Hays, "Computer Organization", McGraw Hill.
- 5. Tannenbaum, "Structured Computer Organization", PHI.
- 6. P Pal Chaudhry," Computer Organization & Design", PHI.

- 1. https://nptel.ac.in/courses/106102062
- **2.** https://archive.nptel.ac.in/courses/106/105/106105163/

	Course Articulation Matrix														
PO-	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO	PO	PSO	PSO	
PSO	1	2	3	4	5	6	7	8	9	0	11	12	1	2	
CO1	2	1			·										
CO2	2	1	1	1											
CO3	2	1	1	1											
CO4	2	1	1	1											

Program	B. Tech CSE (AI)										
Year	II Semester IV										
Course Name	Machine Learning Lab	Machine Learning Lab									
Code	NAI4451	NAI4451									
Course Type	PCC	PCC L T P Credit									
Pre-Requisite	Python	0	0	2	1						
Course Objectives	 Make use of Data sets in implete. To implement unsupervised learn. Implement the machine learn suitable language of choice. To implement handle unbalance. 	ing ning cor	ncepts an								
Course Outcom	les										
CO1	Application of supervised learning										
CO2	Application and Implementation of	Application and Implementation of unsupervised learning									
CO3	Design Java/Python programs for v	arious L	earning a	lgorithms	S						
CO4	Apply appropriate data sets to the l	Machine	Learning	algorithn	ns						

S. No.	List of Experiments	Mapped CO
1	Implement Decision Tree learning	CO1
2	Implement Logistic Regression	CO1
3	Implement classification using Multilayer perceptron	CO1
4	Implement classification using SVM	CO2
5	Implement Bagging using Random Forests	CO2
6	Implement k-nearest Neighbors algorithm	CO3
7	Implement K-means, K-Modes Clustering to Find Natural Patterns in Data	CO3
8	Implement Hierarchical clustering	CO3
9	Implement Gaussian Mixture Model Using the Expectation Maximization	CO3
10	Evaluating ML algorithm with balanced and unbalanced datasets Comparison of Machine Learning algorithms	CO4

- $1. \ https://www.digimat.in/nptel/courses/video/106105152/L01.html/\\$
- 2. https://nptel.ac.in/courses/106105152

					C	ourse A	rticula	tion Ma	trix					
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO 6	PO7	PO8	PO9	PO1 0	PO11	PO1 2	PSO1	PSO2
CO1	2	2	1	2	1							2	1	3
CO2	2	1	2	2	1							2	2	2
CO3	2	2	2	1	1							2	2	2
CO4	2	1	2	2	1							2	3	1

Program	B. Tech CSE (AI)	3. Tech CSE (AI)										
Year	II											
Course Name	Database Management System Lab	Database Management System Lab										
Code	NCS4451	NCS4451										
Course Type	PCC L T P Credit											
Pre-Requisite	Fundamentals of computer knowledge	0	0	2	1							
Course Options	 Students are able to querying a Students are able to take backu Students are able to write funct 	3. Students are able to take backup and rollback database										
Course Outcom	es											
CO1	Infer database language commands	s to create	e simple o	database								
CO2	Analyze the database using queries to retrieve records											
CO3	Applying PL/SQL for processing d	latabase										
CO4	Develop solutions using database of	concepts	for TCL (Comman	ds							

S. No.	List of Experiments	Mapped CO
1	Write the queries for Data Definition and Data Manipulation Language.	CO1
2	Write SQL queries using logical operations (=, <,>, etc).	CO1
3	Write SQL queries using SQL operators.	CO2
4	Write SQL query using character, number, date and group functions.	CO1
5	Write SQL queries for extracting data from more than one table.	CO4
6	Write SQL queries for sub queries, nested queries.	CO2
7	Write programme by the use of PL/SQL.	CO3
8	Concepts for ROLL BACK, COMMIT.	CO4
9	Create VIEWS and understand its concept	CO3
10	Create CURSORS and understand its concept.	CO3

- 1. http://vlabs.iitkgp.ernet.in/se/4/theory/
- 2. https://vsit.edu.in/vlab.html

	Course Articulation Matrix														
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	1		2								1	1	
CO2	3	2	2	1	1								2	1	
CO3	2	3	1	1	2							2	2	1	
CO4	3	3		1	2								3	1	

Program	B.TECH: CSE/CSE-AI/CSE-CCML/CSE-IOTBC											
Year	II	Sem	ester	III/IV								
Course Name	NSS/YOGA											
Code	NCC4351/NCC4451											
Course Type	CQAC L T P Credit											
Pre-Requisite	Fundamental Concepts of Yoga	0	0	2	1							
Course Objectives	 To enable the student to have good health. To practice mental hygiene. To possess emotional stability. To integrate moral values. And To attain higher level of consciousness. 											
Course Outcom	es											
CO1	To Understand the Concept of Yog	a and its	Historica	al Develop	oment.							
CO2	To Analyse the relevance of Yoga	in moder	n age and	d its scope								
CO3	To Apply, the Concept of Yoga in	different	texts.									
CO4	To evaluate the difference between exercises.	Yogic a	nd non-y	ogic syste	m of							

Module	Course Contents	Contact Hrs.	Mapped CO
1	General Introduction of Yoga: Yoga it's Origin, Meaning, Definition & Objectives, Historical Development of Yoga, Relevance of Yoga in modern age and scope, Misconceptions about Yoga and their solutions, Difference between yogic and non-yogic system of	30 Hours	CO1, CO2
2	 Yoga Practices. 1.Asanas Yoga Stretching, Surya namaskar (Warming-up), Standing Asana, Sitting Asana, Prone position Asana, Supine position Asana, Meditative Asana, Relaxation Asana 2.Pranayam- Surya Anuloma Viloma/Surya Bhedana Pranayama Chandra Anuloma Viloma/Chandra Bhedana Pranayama Ujjayi Pranayama Kumbhaka Pranayama Sampoorna Yoga Shwasana (Full Yogic Breathing) 	30 Hours	CO3, CO4
	3.Meditation and Mudras		

- **1.** Prof. Ramharsh Singh Yoga Avam Yoga Chikitsa, Chaukhambha Sanskrit Pratishthan, Delhi-07 2.
- 2. K.S. Joshi Yoga in Daily Life, Orient Paper Back Publication, New Delhi, 1985
- 3. Vijnananand Saraswati Yoga Vigyan, Yoga Niketan Trust, Rishikesh, 1998.
- **4.** Rajkumari Pandey-Bhartiya Yoga Parampara ke Vividh Ayam, Radha Publication, New Delhi, 2008

- **1.** Yoga and Positive Psychology for Managing Career and Life Course (nptel.ac.in) https://nptel.ac.in/courses/106105218
- 2. NPTEL:: Management NOC: Yoga and Positive Psychology for Managing Career and Life.

	Course Articulation Matrix														
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1							2	2				2		2	
CO2							2	2				2		2	
CO3							1	2				2		2	
CO4							2	2				2		2	

Program	B.Tech CSE (AI)										
Year	III	Sem	ester	V							
Course Name	Concepts of Data Science with Pytl	hon									
Code	NAI4501	NAI4501									
Course Type	PCC	L	T	P	Credit						
Pre-Requisite	Probability and statistics	2	1	0	3						
	dictionaries.	Understand and use Python data structures – lists, tuples and									
Course	2. Understand the data science prod		explorati	on.							
Objectives	3. Evaluate Machine learning algor										
	4. Analyse types of learning, proce models.	sses, tecl	nniques a	nd							
Course Outcom	es										
CO1	Understand the data science concep	ots, techn	iques and	d models.							
CO2	Identify appropriate data visua requirements imposed by the data t				*						
CO3	Build data graphics with the appropriate software for the task at hand.	ropriate o	data visu	alization	and analytics						
CO4	Student must be able to preproce transformation and find correlation			_	g, integration,						

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to Data Science Case for data science, data science classification, data science algorithms; Data Science Process, prior Knowledge, Data Preparation, Modeling, Application, Knowledge; Data Exploration, Objectives of data Exploration; Datasets, Descriptive Statistics; Data Visualization, Roadmap for data exploration.	30 Hours	CO1
2	Data Manipulation and Visualization Introduction, Forms of data graphics, Visualizing categories Design principles, Visualizing locations Interaction / animation, Visualizing locations, Visualizing time Building and using metrics, Visualizing multivariate displays Perception principles and presenting data graphics, Visualizing multivariate displays.	30 Hours	CO2, CO3
3	Introduction to NumPy, Pandas and Matplotlib, How to Import NumPy module, what is a data Manipulation using Panda's library? Series object in pandas, Data Frame in Pandas, loading a handling data with Pandas, Introduction to Matplotlib, Using Matplotlib for plotting Graphs and charts like Scatter, Bar, Pie, Line, Histogram and more.	30 Hours	CO4

- 1. Data Science Fundamentals and Practical Approaches: Understand Why Data Science Is the Next by Dr Gypsy Anand/ Dr Rupam Sharma.
- 2. Wes McKinney. "Python for Data Analysis", O'Reilly Media, 2017, 2nd Edition.
- 3. Grus, Joel. "Data Science from Scratch: First Principles with Python", O'Reilly Media, 2015, 1st Edition.
- 4. Brian K. Jones and David M. Beazley. "Python Cookbook", O'Reilly Media, 2013, 3rd Edition.

- 5. Dipanjan Sarkar, "Text Analytics with Python: A Practitioner"s Guide to Natural Language Processing", A Press, 2019, 2nd Edition.
- 6. Daniel Jurafsky, James H. Martin, "Speech and Language Processing", Pearson, 2009.

1. https://onlinecourses.nptel.ac.in/noc23_cs21/preview

	Course Articulation Matrix													
PO-	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
PSO	1	102	103	104	103	100	107	100	10)	1010	1011	1012	1301	1302
CO1	1	1	2	2	1							2	1	1
CO2	2	1	3	1	2							1	1	1
CO3	1	1	2	1	3							2	2	2
CO4	1	2	2	2	1							1	1	1

Program	B. Tech CSE (AI)								
Year	III	Sem	ester	V					
Course Name	Artificial Neural Network								
Code	NAI4502								
Course Type	PCC	L	T	P	Credit				
Pre-Requisite	Probability and statistics	3	0	0	3				
Course Objectives	problems 2. To understand basis neural netw	 To understand basis neural networks models To understand the application areas of neural networks 							
Course Outcom	es								
CO1	Introduction to basic working of ne	euron wo	rking and	learning					
CO2	To understand Perceptron learning	techniqu	es and ap	plication					
CO3	To understand and apply back prop	To understand and apply back propagation for ANN learning							
CO4	To understand the basics of superv	ised learr	ning.						

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction: Human Brain, Neural Network, Models of a Neuron, Neural Networks viewed as Directed Graphs, Network Architectures, Knowledge Representation, Artificial Intelligence and Neural Networks, Error Correction Learning, Memory Based Learning, Hebbian Learning, Competitive, Boltzmann Learning, Credit Assignment Problem, Memory, Adaption, Statistical Nature of the Learning Process.	30 Hours	CO1
2	Perceptron: Adaptive Filtering Problem, Unconstrained Organization Techniques, Linear Least Square Filters, Least Mean Square Algorithm, Learning Curves, Learning Rate Annealing Techniques, Perceptron –Convergence Theorem, Relation Between Perceptron and Bayes Classifier for a Gaussian Environment Multilayer Perceptron: Back Propagation Algorithm XOR Problem, Heuristics, Output Representation and Decision Rule, Computer Experiment, Feature Detection.	30 Hours	CO2
3	Back Propagation: Back Propagation and Differentiation, Hessian Matrix, Generalization, Cross Validation, Network Pruning Techniques, Virtues, and Limitations of Back Propagation Learning, Accelerated Convergence, Supervised Learning	30 Hours	CO3, CO4

- 1. Neural Networks a Comprehensive Foundations, Simon Haykin, PHI edition, 2004.
- 2. Artificial Neural Networks B. Yegnanarayana Prentice Hall of India P Ltd 2005.
- 3. Neural Networks in Computer Inteligance, Li Min Fu TMH 2003.

Online Resources

1. https://nptel.ac.in/courses/117105084

	Course Articulation Matrix													
PO- PSO	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3	2									2	1
CO2	3	2	2	2									2	2
CO3	3	1	2	1									1	2
CO4	3	2	3	3									3	3

Program	B. Tech CSE (AI)									
Year	III	Sem	ester	V						
Course Name	Computer Networks									
Code	NCS4503									
Course Type	PCC	PCC L T P Credit								
Pre-Requisite	Knowledge of Computer Operations 3 0 0 3									
Course Objectives	of layered approach 2. To understand the working of Switch, Hub etc. 3. To understand the concept of december 1.	 To understand the working of computer networks hardware like LAN, Switch, Hub etc. To understand the concept of data communication To understand the concept of various routing and protocols used in data 								
Course Outcom	es									
CO1	Explain basic concepts of OSI referendevices and transmission media, Analogous Explain basic concepts of OSI references.									
CO2	Describe the functions Data link layer	Describe the functions Data link layer and Network layer								
CO3	Describe the functions Transport, Sess	sion and P	resentatio	n layer						
CO4	Describe the functions Application La	yer								

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction Introduction: Network objectives and applications; network structure and architecture; OSI reference model; network services; network standardization; examples of network, TCP/IP model Physical layer: Fundamentals of data communication;	30 Hours	CO1
	transmission media; analog transmission; digital transmission; switching; ISDN; terminal handling; Broadcast channels and medium access: LAN protocols		
	Data link layer and Network layer		
2	Data link layer: Design issues; error detection and corrections; elementary data link protocols; sliding window protocols. Examples;	30	CO2
	Network layer : Design issues; routing algorithms; congestion control; internetworking. Examples. CSMA with collision detection; collision free protocols; IEEE standard 802 for LANs; comparison of LANs; Fiber optic network and FDDI.	Hours	
3	Transport, Session and Presentation layer	30 Hours	CO3, CO4
	Transport layer: Design Issues; connection management; example of a simple transport protocol.	110018	CO4
	Session layer: Design issues; remote procedure call; examples, Presentation layer: Design issues; data compression and encryption; network security and privacy.		

	Examples;	
I	Application Layer	
	Design issues; File transfer and file access; electronic mail;	
	virtual terminals; other applications, Case study based on	
	available network software.	

- 1. Andrew S. Tanenbaum "Computer Networks" Prentice Hall of India
- 2. William Stallings "Local Networks" Maxwell Macmillan International Edition.
- 3. B.A. Frozen "Data Communication and Networking". Tata McGraw Hill.

- 1. https://nptel.ac.in/courses/106105183
- **2.** https://archive.nptel.ac.in/courses/106/105/106105081/

	Course Articulation Matrix													
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1											1	1
CO2	2	1	1										1	1
CO3	2	1	1										1	1
CO4	2	1	1									1	1	1

Program	B. Tech CSE (AI)										
Year	III	Semester	•	V							
Course Name	Automata Theory and Formal Languages										
Code	NCS4504	NCS4504									
Course Type	PCC	PCC L T P Credit									
Pre-Requisite	Discrete Mathematics, Data Structu	ıre	3	1	0	4					
Course Objectives	2. To explain the hierarchy of prol3. To familiarize Regular gramma	4. To determine the decidability and intractability of computational									
Course Outcom	es										
CO1	Apply the knowledge of automata t for solving the problem	heory, gramn	nars &	& regu	lar ex	pressions					
CO2	Analyse the give automata, regular language it represents	expression &	gran	nmar t	o kno	w the					
CO3	Design Automata & Grammar for p	oattern recogn	ition	and s	yntax	checking.					
CO4	Identify limitations of some computations proving them	tational mode	els an	d poss	ible n	nethods of					

Module	Course Contents	Contact Hrs.	Mapped CO
1	Fundamentals: Formal Languages, Strings, Alphabets, Languages, Chomsky Hierarchy of languages. Finite Automata: Introduction to Finite State machine, Acceptance of strings and languages, Deterministic finite automaton (DFA) and Non-deterministic finite automaton (NFA), Equivalence of NFA and DFA − Equivalence of NDFAs with and without €-moves, Minimization of finite automata, Equivalence between two DFA's, Finite automata with output − Moore and Mealy machines, conversion of Moore to Mealy and Mealy to Moore.	30 Hours	CO1
2	Regular Languages: Regular expressions, Identity rules, Conversion of a given regular expression into a finite automaton, Conversion of finite automata into a regular expression, Pumping lemma for regular sets, Closure properties of regular sets. Context Free Grammars: Context free grammars and	30	CO2
2	languages, Derivation trees, Leftmost and rightmost derivation of strings and Sentential forms, Ambiguity, left recursion and left factoring in context free grammars, Minimization of context free grammars, Normal forms for context free grammars, Chomsky normal form, Greibach normal form, Pumping Lemma for Context free Languages, Closure and decision properties of context free languages.	Hours	CO2
3	Pushdown Automata: Introduction to Pushdown automata, Acceptance of context free languages, Acceptance by final state and acceptance by empty state and its equivalence,	30 Hours	CO3

	Equivalence of context free grammars and pushdown		
	automata, Inter-conversion.		
	Turing Machine (TM): Problems That Computers Cannot		
	Solve, The Turing Machine, Programming Techniques for		
	Turing Machines ,Extensions to the Basic Turing Machine,		
	Restricted Turing Machines, Turing Machines and	30	
4	Computers, Definition of Post's Correspondence Problem, A	Hours	CO4
	Language That Is Not Recursively Enumerable, An	пошѕ	
	Undecidable Problem That Is RE, Context sensitive		
	languages and Chomsky hierarchy, Other Undecidable		
	Problems		

- 1. Introduction to Languages and Automata Theory By John C Martin, Tata McGraw-Hill
- 2. Introduction to computer theory By Deniel I. Cohen ,Joh Wiley & Sons, Inc
- 3. Computation: Finite and Infinite By Marvin L. Minsky Prentice-Hall

- 1. https://nptel.ac.in/courses/106104028/theory of computation.
- 2. https://lagunita.stanford.edu/courses/coursev1: Computer Science + Automata + Self Paced/about

	Course Articulation Matrix													
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	1							1	2	1
CO2	3	3	2	2	1							2	1	1
CO3	3	3	2	2	2							2	3	1
CO4	3	2	1	1	2							2	2	1

Program	B. Tech CSE (AI)								
Year	III	Semeste	er	V					
Course Name	Data Science with Python Lab	Data Science with Python Lab							
Code	NAI4551								
Course Type	PCC	L	T	P	Credit				
Pre-Requisite	Basic knowledge of Python	0	0	2	1				
	1. Implement the fundamentals of data science.								
Course	2. Know how to analyse data through summary statistics.								
Objectives	3. Use a range of Python features	for nume	erical ana	lysis.					
	4. Implementing data visualization	n							
Course Outcom	es								
CO1	Implement python programming to	read file	es						
CO2	Implement Statistics Algorithms								
CO3	Perform data loading, cleaning, tran	nsformati	ion and n	nerging					
CO4	Create different plots for basic expl	loratory o	data anal	ysis					

S. No.	List of Experiments	Mapped CO					
1	Implementation of a program for reading of different types of data sets	CO1					
	(.txt,.csv) from web and disk and writing in file in specific disk location.						
2	Implementation of a program for reading of EXCEL and XML data sheets	CO1					
	Using Numpy .						
3	Implementation of Basic Statistics functions and performs visualization.	CO2					
4	Write a program to Find the data distributions using box and scatter plot.	CO2,CO3					
5	Working with Pandas data frames.	CO1,CO3					
6	Write a program to Devolops python program for Normal Curves.	CO3,CO4					
7	Write a program to Devolops python program for Correlation and scatter	CO4					
/	plots.						
8	Write a program to Develop python program for Frequency distributions.	CO3,CO4					
9	Write a program to Develop python program for Correlation coefficient.	CO3,CO4					
10	Write a program to Develop python program for Variability.	CO3,CO4					

- 1. https://python-iitk.vlabs.ac.in/
- 2. https://www.iiitmk.ac.in/DAVirtalLab/

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO 6	PO7	PO8	PO9	PO1 0	PO11	PO1 2	PSO1	PSO2
CO1	3	2	1	1									1	2
CO2	2	1	2	2									3	2
CO3	3	2	2	1								2	2	2
CO4	2	2	1	2								1	3	2

Program	B. Tech CSE (AI)	B. Tech CSE (AI)								
Year	III	Sem	ester	V						
Course Name	Artificial Neural Network Lab									
Code	NAI4552									
Course Type	PCC	L	T	P	Credit					
Pre-Requisite	Basic knowledge of Python	0	0	2	1					
Course Objectives	 Application of Perceptron. Application of CNN Application of BP. Application of Recurrent Network. 									
Course Outcom	es									
CO1	Implementation of Perceptron for	solving v	arious p	roblems.						
CO2	Implement recurrent network.									
CO3	Implement time Series.									
CO4	Implement CNN, Back Propagation	n.								

S. No.	List of Experiments	Mapped CO
1	Write a program to implement Perceptron.	CO1
2	Write a program to implement AND, OR, NOT, NAND, NOR, XOR gates using Perceptron.	CO1
3	Write a program to implement Addition, Subtraction, Multiply and Divide functions.	CO1
4	Write a program to implement classification of linearly separable Data with a perceptron.	CO1
5	Write a program to implement Gated Recurrent Units to predict the stock prices based on historic data.	CO2
6	Write a program to implement Crab Classification using pattern net.	CO3
7	Write a program to implement Long Short Term Memory for Time Series Prediction.	CO3
8	Write a program to implement Wine Classification using Back propagation.	CO4
9	Write a program to implement Convolutional Neural Network and Recurrent Neural Network.	CO4
10	Write a program to implement ImageNet, Google Net, Res Net convolutional Neural Networks.	CO4

1. https://cse22-iiith.vlabs.ac.in/

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO2
CO1	1	3	1		3								1	
CO2	1	2	2	1									1	1
CO3	2	1	3	1	2								1	
CO4	1	2	1		3								1	

Program	B. Tech CSE (AI)								
Year	III	Semester V							
Course Name	Computer Networks Lab								
Code	NCS4553								
Course Type	PCC	L	T	P	Credit				
Pre-Requisite	Basic of Networking.	0	0	2	1				
Course Objectives	 Understanding the concepts of N Studying about different Stuffing Gaining knowledge of different Applying the various concepts in 	g Concep Topologi	ets.						
Course Outcom	es								
CO1	1. Understand the concepts of Netv	vork Cab	les and N	letwork C	ommands.				
CO2	2. Analyze the use of Local Area N	etworks.							
CO3	3. Evaluate the performance of diff	erent pro	grams re	lated to N	etworking.				
CO4	4. Design and Apply different Topo	ologies th	nrough si	mulation.					

S. No.	List of Experiments	CO Mapping
1	Study of different type of Network cables and practically implement the cross wired cable.	CO1
2	Study and implementation of basic network command and network configuration commands.	CO1
3	Connect the computers in local area network.	CO2
4	To write a socket program for implementation of echo.	CO2
5	Write a program in C to perform character stuffing.	CO3
6	Write a program in C to perform Bit stuffing.	CO3
7	Implement CRC (Cyclic redundancy check) in C.	CO3
8	Write a program in C to implement sliding window protocol.	CO3
9	To create Scenario and Study the performance of Ring topology through simulation.	CO4
10	To create Scenario and Study the performance of Bus topology through simulation.	CO4

1. http://vlabs.iitkgp.ac.in/ant/1/

	Course Articulation Matrix													
PO- PSO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
CO1	3	2	2	1	2							1	2	1
CO2	2	3	2	2	1							1	2	3
CO3	3	2	2	1	3							1	3	2
CO4	3	2	2	1	2							2	3	1

Program	B.TECH:CSE/CSE-AI/CSE-CCML/CSE-IOTBC									
Year	III		ester	V						
Course Name	ESSENCE OF INDIAN TRADITION	ONAL K	NOWLE	DGE						
Code	NVC4501									
Course Type	CQAC	L	T	P	Credit					
Pre-Requisite	The Concepts Of Indian Traditional Knowledge And To Make ThemUnderstand The Importance of Roots Of Knowledge System.		0	0	1					
Course Objectives	 To Understand the concept of Traditional knowledge and its importance To Know the need and importance of protecting traditional To Apply, Know the various enactments related to the protection of traditional knowledge To Understand the concepts of Intellectual property to protect the traditional. 									
Course Outcom	es									
CO1	To Understand and elucidate the batto develop the physical and soo systems.		_		-					
CO2	To Analyse the significance of communicate the traditional knowledge.			wledge	protection to					
CO3	To Apply toRecognize the role of measure its impact on the global ec		ent on tr	aditional	knowledge to					
CO4	To Evaluate and Summarize the FORA for excel protection of India				global legal					

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to Indian Traditional Knowledge: Understanding the concept and significance of Indian Traditional Knowledge, Historical background, and evolution of traditional knowledge in India. Intellectual Property Rights (IPR): Overview of Intellectual Property Rights and its importance in the context of traditional knowledge, Different types of IPRs: Copyright, Trademarks, Patents, and Geographical Indications. Traditional Knowledge and Traditional Cultural Expressions (TCEs): Introduction to Traditional Cultural Expressions and the challenges in their protection, Examination of international frameworks like the WIPO Intergovernmental Committee on Intellectual Property and Genetic Resources, Traditional Knowledge, and Folklore. Traditional Knowledge and Traditional Ecological Knowledge (TEK) Understanding the relationship between traditional	30 Hours	CO1, CO2

	knowledge and traditional ecological knowledge, Analysis of the role of TEK in environmental conservation and sustainable development. TRADITIONAL KNOWLEDGE AND IPR LAWS IN INDIA		
2	Traditional Knowledge and IPR Laws: Study of the legal framework for the protection of traditional knowledge in India, Examination of relevant laws and regulations, such as the Traditional Knowledge Digital Library (TKDL), Traditional Knowledge and Patent Law: Understanding the challenges and issues surrounding the patenting of traditional knowledge, Analysis of case studies highlighting the controversies and debates in the field. Traditional Knowledge and Copyright Law: Exploring the relationship between traditional knowledge and copyright law, Discussion on the issues of cultural appropriation and protection of traditional expressions. Traditional Knowledge and Geographical Indications (GI):Overview of Geographical Indications and their significance in protecting traditional knowledge, Case studies on the successful registration and protection of traditional products and practices. Traditional Knowledge, IPR, and the Future: Analysis of the current trends and future prospects for the protection and preservation of Indian traditional knowledge, Examination of emerging issues such as digital platforms and traditional knowledge dissemination.	30 Hours	CO3, CO4

- 1. Traditional Knowledge System in India, by Amit Jha, 2009.
- **2.** Traditional Knowledge System and Technology in India by Basanta Kumar Mohanta and Vipin Kumar Singh, Pratibha Prakashan 2012.
- 3. Traditional Knowledge System in India by Amit Jha Atlantic publishers, 2002.
- **4.** Sampath, P. G. (2012). Traditional Knowledge Systems and Intellectual Property Rights. Routledge.
- **5.** Sharma, G., & Kumar, V. (Eds.). (2016). Indian Traditional Knowledge and Intellectual Property Rights: Innovations in Traditional Knowledge Preservation. Springer.
- **6.** Ganguli, P. (2010). Indian Traditional Knowledge and Intellectual Property Rights: Indigenous Community Initiatives. Ane Books Pvt Ltd.

- 1. https://aec.edu.in/knowledge/
- 2. https://www.iare.ac.in/?q=node/3745

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1								1	2	2		2		1
CO2								2	2	4		3		2
CO3								1	1	4		2		2
CO4								2	2	3		1		2

Program	B. Tech CSE (AI)										
Year	III	Semester VI									
Course Name	Design & Analysis of Algorithms										
Code	NCS4602										
Course Type	PCC L T P Credit Data Structure 3 1 0 4										
Pre-Requisite	Data Structure 3 1 0 4										
	1. Analyze the asymptotic performa	ance of a	lgorithm	S.							
Course	2. Proving correctness of algorithm	S.									
Objectives	3. Demonstrate a familiarity with m										
	4. Apply important algorithmic des	ign parac	digms an	d methods	s of analysis.						
Course Outcom	es										
CO1	Analyze the problem and design an & modifying classical design techn technique		_		•						
CO2	Evaluate and compare those using select the best solution	standard	mathema	itical tech	niques and						
СО3	Understand the mathematical criter efficient, and know many practicall any efficient algorithms.										
CO4	Apply the different kind of complet solution to problems having large c			non dete	rministic						

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction and Advanced Data Structure: Notion of Algorithm, Analysis of algorithms, Designing of Algorithms, Growth of Functions, Master's Theorem Asymptotic Notations and Basic Efficiency Classes, Shorting and Searching Algorithm: Insertion Sort Selection Sort and Bubble Sort Divide and conquer - Merge sort, Quick Sort, Heap Sort, Sequential Search and Binary Search	30 Hours	CO1
2	Advanced Data Structures: Red-Black Trees, B – Trees, Binomial Heaps, and Fibonacci Heaps. Greedy Methods with Examples Such as Optimal Reliability Allocation, Knapsack, Minimum Spanning Trees – Prim's and Kruskal's Algorithms, Single Source Shortest Paths - Dijkstra's and Bellman Ford Algorithms.	30 Hours	CO2
3	Dynamic Programming with Examples Such as Knapsack. All Pair Shortest Paths – Warshal's and Floyd's Algorithms, Resource Allocation Problem, Matrix chain multiplication Backtracking, Branch and Bound with Examples Such as Travelling Salesman Problem, Graph Coloring, n-Queen Problem, Hamiltonian Cycles and Sum of Subsets.	30 Hours	СОЗ
4	Selected Topics: String Matching-The naive method, Rabin-Karp method, Boyer-Moore, Knuth-Morris-Pratt(KMP) Theory of NP-Completeness, Approximation Algorithms and Randomized Algorithms	30 Hours	CO4

- **1.** Thomas H. Coreman, Charles E. Leiserson and Ronald L. Rivest, "Introduction to Algorithms", Printice Hall of India.
- 2. E. Horowitz & S Sahni, "Fundamentals of Computer Algorithms",
- **3.** Aho, Hopcraft, Ullman, "The Design and Analysis of Computer Algorithms" Pearson Education, 2008.
- 4. LEE "Design & Analysis of Algorithms (POD)", McGraw Hill

Online Resources

1. https://nptel.ac.in/courses/106106131

	Course Articulation Matrix														
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	1	3	3	1	3								1	3	
CO2	1	1	1	2	3								1	3	
CO3	2	2	1	2	2								2	2	
CO4	1	2	1	3	1								1	2	

Program	B. Tech: CSE(AI)										
Year	III Semester VI										
Course Name	Compiler Design										
Code	NCS4604										
Course Type	PCC L T P Credi										
Pre-Requisite	Automata Theory	3	1	0	4						
Course Objectives	interpreters.2. Building of translators both fron3. Identifies and explores the main	 To apply the theory of language translation to build compilers and interpreters. Building of translators both from scratch and using compiler generators. Identifies and explores the main issues of the design of translators. The construction of a compiler/interpreter for a small language 									
Course Outcom	es										
CO1	Understand different phases and compiler tools like LEX, YACC, et		of the	compiler	and use the						
CO2	Analyse the concepts of parser and	its types	•								
CO3	Understanding translation and appl	ying it.									
CO4	Applying code generation and optim	mization	on target	machine							

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to Compiler: Phases and passes, Bootstrapping, Finite state machines and regular expressions and their applications to lexical analysis, Optimization of DFA-Based Pattern Matchers implementation of lexical analyzers, lexical-analyzer generator, LEX compiler, Formal grammars and their application to syntax analysis, BNF notation, ambiguity, YACC. The syntactic specification of programming languages: Context free grammars, derivation and parse trees, capabilities of CFG. Basic Parsing Techniques: Parsers, Shift reduce parsing, operator precedence parsing, top down parsing, predictive parsers.	30 Hours	CO1
2	Automatic Construction of efficient Parsers: LR parsers, the canonical Collection of LR(0) items, constructing SLR parsing tables, constructing Canonical LR parsing tables, Constructing LALR parsing tables, using ambiguous grammars, an automatic parser generator, implementation of LR parsing tables. Parse trees & syntax trees, three address code, quadruple &	30 Hours	CO2, CO3
	triples, translation of assignment statements, Boolean expressions, statements that alter the flow of control, postfix translation, translation with a top down parser.		
3	Syntax-directed Translation: Syntax-directed Translation schemes, Implementation of Syntax directed Translators, Intermediate code, postfix notation.	30 Hours	CO3
	More about translation: Array references in arithmetic expressions, procedures call, declarations and case statements. Symbol Tables: Data structure for symbols tables, representing scope information. Run-Time Administration:		

	Implementation of simple stack allocation scheme, storage allocation in block structured language.		
4	Error Detection & Recovery: Lexical Phase errors, syntactic phase errors semantic errors. Code Generation: Design Issues, the Target Language. Addresses in the Target Code, Basic Blocks and Flow Graphs, Optimization of Basic Blocks, Code Generator. Code optimization: Machine-Independent Optimizations, Loop optimization, DAG representation of basic blocks, value numbers and algebraic laws, Global Data-Flow analysis.	30 Hours	CO4

- 1. Aho, Sethi& Ullman, "Compilers: Principles, Techniques and Tools", Pearson Education.
- **2.** K. Muneeswaran, Compiler Design, First Edition, Oxford University Press.
- 3. J.P. Bennet, "Introduction to Compiler Techniques", Second Edition, McGraw-Hill, 2003.
- **4.** HenkAlblas and Albert Nymeyer, "Practice and Principles of Compiler Building with C", PHI, 2001.
- 5. V Raghvan, "Principles of Compiler Design", McGraw-Hill.
- 6. Kenneth Louden," Compiler Construction", Cengage Learning.
- 7. Charles Fischer and Ricard LeBlanc," Crafting a Compiler with C", Pearson Education.

- 1. https://nptel.ac.in/courses/106104123
- 2. https://nptel.ac.in/courses/106105190

	Course Articulation Matrix														
PO- PSO	PO1	PO2	PO 3	PO4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO1 2	PSO1	PSO2	
CO1	3	2	1	1	1							1	2	1	
CO2	3	3	2	1	2							2	1	2	
CO3	3	3	2	2	3							2	2	1	
CO4	3	2	1	1	1							1	1	1	

Program	B. Tech CSE (AI)										
Year	III Semester VI										
Course Name	Algorithms Lab										
Code	NCS4652										
Course Type	PCC L T P Credit										
Pre-Requisite	Command on Programming Language										
Course Objectives	Write rigorous correctness procDemonstrate a familiarity with	 Analyze the asymptotic performance of algorithms. Write rigorous correctness proofs for algorithms. Demonstrate a familiarity with major algorithms and data structures. Apply important algorithmic design paradigms and methods of analysis. 									
Course Outcom	es										
CO1	Implement various search technique	ies									
CO2	Implement various sorting technique	ies.									
CO3	Implement backtracking strategy.										
CO4	Implement various greedy and dyn	amic prog	grammin	g techniq	ues.						

S. No.	List of Experiments	Mapped CO
1	Program for Recursive Binary & Linear Search.	CO1
2	Implement Merge Sort.	CO2
3	Implement Quick Sort (Divide & Conquer).	CO2
4	Implement Heap Sort.	CO2
5	Implement Knapsack problem (Greedy ALGO.).	CO4
6	Implement Insertion Sort.	CO2
7	Implement Shortest path by Dijkstra Algorithm.	CO1
8	Implement 8- Queen problem (Back Tracking).	CO3
9	Implement Prim's Algorithms.	CO1
10	Implement Kruskal's Algorithm.	CO4

- https://cse01-iiith.vlabs.ac.in/exp/sorting/
 http://ebootathon.com/labs/beta/csit/DAA/exp1/simulation.html

	Course Articulation Matrix														
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	1	3	1							1	2	3	
CO2	3	2	3	1	1							1	2	3	
CO3	1	3	2	2	1								1		
CO4	1	2	3	1	2							2	2	2	

Program	B Tech CSE (AI)										
Year	III	Sem	ester	VI							
Course Name	Compiler Design Lab										
Code	NCS4654										
Course Type	Lab	Lab L T P Credit									
Pre-Requisite	Concept of Data Structures and Theory of Automata & Formal Languages.	0	0	2	1						
Course Objectives	 To understand the various phases To understand the design of top- To understand syntax directed tra To introduce lex and yacc tools. 	down and	d bottom	-up parsei							
Course Outcom	es										
CO1	Ability to design, develop, and imp	lement a	compile	r for any l	anguage.						
CO2	Implement a parser for different co	ntext free	gramma	ırs.							
CO3	Implement code optimization techn	Implement code optimization techniques.									
CO4	Able to use lex and yacc tools for d	levelopin	g a scanr	ner and a p	oarser.						

S. No.	List of Experiments	CO Mapped
1	Implementation of LEXICAL ANALYZER for IF STATEMENT.	CO1
2	Implementation of LEXICAL ANALYZER for ARITHMETIC EXPRESSION.	CO4
3	Construction of NFA from REGULAR EXPRESSION.	CO2
4	Construction of DFA from NFA.	CO2
5	Implementation of SHIFT REDUCE PARSING ALGORITHM.	CO3
6	Implementation of OPERATOR PRECEDENCE PARSER.	CO3
7	Implementation of RECURSIVE DESCENT PARSER	CO4
8	Implementation of LALR PARSER	CO1
9	Implementation of CODE OPTIMIZATION TECHNIQUES.	CO2
10	Implementation of CODE GENERATOR.	CO2

- 1. https://nptel.ac.in/courses/106108113
- **2.** https://github.com/topics/compiler-design?o=desc&s=updated

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	3	3	3					3	3		3	3	
CO2	3	3		3					2	3			3	
CO3	3	3	2	3					3	3		3	3	
CO4	3	3		2	3				3	3			2	

Program	B. Tech CSE(AI)											
Year	IV	Sem	ester	VII								
Course Name	Natural Language Processing											
Code	NAI4701											
Course Type	PCC	L	T	P	Credit							
Pre-Requisite	Python, Image Processing	3	1	0	4							
	1. To tag a given text with basic La	inguage f	eatures									
Course	2. To design an innovative applicat	ion using	g NLP co	mponents	S							
Objectives	3. To learn the fundamentals of nat	3. To learn the fundamentals of natural language processing										
	4. To understand the use of CFG as	nd PCFG	in NLP									
Course Outcom	es											
CO1	Understating leading trends and sys	stems in 1	natural la	nguage p	rocessing.							
CO2	Understating parsing of language											
CO3	Understating the syntactic, semanti and familiarize with applications of		igmatic p	rocessing	g of language							
CO4	Understand approaches to discourse summarization within NLP.	e, genera	tion, dial	ogue and								

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to NLP: Need of NLP, History of NLP, Advantages and Disadvantages of NLP, Applications of NLP. How does NLP work, components of NLP, Phases of NLP, NLP vs. Machine learning? NLP examples, Future of NLP.	30 Hours	CO1
2	Lexical analysis: Unsmoothed N grams, evaluating N grams, Morphology and Finite state Transducers, Interpolation and Back off word classes, Part of Speech Tagging–Markov Models, Hidden Markov Models. Transformation based Models – Maximum Entropy Models.	30 Hours	CO2
3	Syntax Parsing: Concept of Parser, Types of Parsing, Concept of Derivation, Types of Derivation, Concept of Grammar, CFG, Definition of CFG. Grammar rules for English Treebank's, Normal forms for grammar—Dependency Grammar, Syntactic Parsing, Ambiguity, Dynamic Programming Parsing-Shallow Parsing.	30 Hours	CO3
4	Semantic Analysis and Disclosure Pragmatic:-Elements of Semantics Analysis, Difference between Polysemy and Homonymy. Meaning Representatives, Need of Meaning Representative, and Disclosure Pragmatic- Concept of Coherence, Disclosure structure, Text coherence, and Building Hierarchical Disclosure structure. Reference Resolution, Terminology used in Reference Resolution.	30 Hours	CO4

- 1. Daniel Jurafsky, James H. Martin: "Speech and Language Processing", 2/E, Prentice Hall, 2008.
- **2.** James Allen, "Natural Language Understanding", 2/E, Addison-Wesley, 199Christopher D. Manning, Hinrich Schutze: "Foundations of Statistical Natural Language Processing", MIT Press,1999

- 3. Steven Bird, Natural Language Processing with Python, 1st Edition, O'Reilly, 2009.
- 4. Jacob Perkins, Python Text Processing with NLTK 2.0 Cookbook, Packt Publishing, 2010

- 1. https://onlinecourses.nptel.ac.in/noc19_cs56/preview
- ${\bf 2.\ https://online courses.nptel.ac.in/noc 20_cs 87/preview}$

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	2	1									1	2
CO2	1	2	2	3									2	2
CO3	2	1	1	2									1	1
CO4	2	1	1	1									2	1

Program	B. Tech CSE (AI)											
Year	IV Semester VII											
Course Name	Fuzzy Logic											
Code	NAI4702											
Course Type	PCC L T P Credit											
Pre-Requisite	Fundamentals of AI	Fundamentals of AI 2 1 0 3										
Course Objectives	 To teach about the concept of fuzziness involved in various systems. To provide adequate knowledge about fuzzy set theory. To provide adequate knowledge of application of fuzzy logic control to real time systems. Comprehend the fuzzy logic control and to design the fuzzy control using genetic algorithms. Apply basic fuzzy system modelling methods. 											
Course Outcome	es											
CO1	Understand fuzzy logic membership fun	ction.										
CO2	Analyse on Fuzzy logic membership fun	ction	and fuzzy	inference	systems.							
CO3	Design the fuzzy set theory on the statist	tical m	ethod wh	nich is give	en.							
CO4	Analyse statistical data by using fuzzy lo	ogic m	ethods.									

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction, Classical Sets and Fuzzy Sets: Classical sets: Operations and properties of classical sets, Mapping of classical sets to the functions. Fuzzy sets - Membership functions, Fuzzy set operations, Properties of fuzzy sets. Classical and Fuzzy relations: Cartesian product, crisp relations-cardinality, operations, and properties of crisp relations. Fuzzy relations-cardinality, operations, properties of fuzzy relations, fuzzy Cartesian product and composition, Fuzzy tolerance and equivalence relations, value assignments and other format of the composition operation.	30Hours	CO1
2	Fuzzification and Defuzzification: Features of the membership functions, various forms, fuzzification, defuzzification to crisp sets, - cuts for fuzzy relations, Defuzzification to scalars. Fuzzy logic and approximate reasoning, other forms of the implication operation. Fuzzy Systems: Natural language, Linguistic hedges, Fuzzy (Rule based) System, Aggregation of fuzzy rules, Graphical techniques of inference, Membership value assignments: Intuition, Inference, rank ordering, Fuzzy Associative memories.	30Hours	CO2, CO3
3	Fuzzy decision making: Fuzzy synthetic evaluation, Fuzzy ordering, Preference and consensus, Multi objective decision making, Fuzzy Bayesian, Decision method, Decision making under Fuzzy states and fuzzy actions. Fuzzy Classification: Classification by equivalence relations-crisp relations, Fuzzy relations, Cluster analysis, Cluster validity, C-Means clustering, Hard C-Means clustering, Fuzzy C-Means algorithm, Classification metric, Hardening the Fuzzy C-Partition.	30Hours	CO3

- 1. Timothy J. Ross Fuzzy logic with engineering applications, 3rd edition, Wiley, 2010.
- 2. George J. KlirBo Yuan Fuzzy sets and Fuzzy logic theory and Applications, PHI, New Delhi, 1995.

Online Resources

1. http://www.nptel.ac.in/syllabus/syllabus.php?subjectId=111106048

	Course Articulation Matrix														
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO 6	PO7	PO8	PO9	PO1 0	PO11	PO1 2	PSO1	PSO2	
CO1	1	3	1		3								1		
CO2	1	2	2	1									1	1	
CO3	2	1	3	1	2								1		
CO4	1	2	1		3								1		

Program	B. Tech CSE (AI)				
Year	IV	Semester	· V	II	
Course Name	Natural Language Processing Lab				
Code	NAI4751				
Course Type	PCC	L	T	P	Credit
Pre-Requisite	Proficiency in Python Programming	0	0	2	1
Course Objectives	 Understand machine learning techn Analyse various algorithms applied 			· ,	
Course Outcom	es				
CO1	Implement approaches to syntax and s	emantics i	n NLP.		
CO2	Implement approaches to disco summarization within NLP.	ourse, ge	eneratio	n, dial	ogue and
CO3	Implement current methods for translation.	statistical	appro	aches to	o machine
CO4	Implement Hidden Markov mode grammars.	els and	probab	ilistic (context-free

S. No.	List of Experiments	Mapped CO
1	Word Analysis The objective of the experiment is to learn about morphological features of a word by analyzing it.	CO1
2	Word Generation The objective of the experiment is to generate word forms from root and suffix information.	CO2
3	Morphology Understanding the morphology of a word by the use of Add-Delete table	CO3
4	N-Grams The objective of this experiment is to learn to calculate bigrams from a given corpus and calculate probability of a sentence.	CO4
5	N-Grams Smoothing The objective of this experiment is to learn how to apply add-one smoothing on sparse bigram table.	CO1
6	POS Tagging - Hidden Markov Model The objective of the experiment is to calculate emission and transition matrix which will be helpful for tagging Parts of Speech using Hidden Markov Model.	CO2
7	POS Tagging - Viterbi Decoding The objective of this experiment is to find POS tags of words in a sentence using Viterbi decoding.	CO3
8	Building POS Tagger The objective of the experiment is to know the importance of context and size of training corpus in learning Parts of Speech	CO4

1. https://nlp-iiith.vlabs.ac.in/

	Course Articulation Matrix														
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	1	2	1		3								3	3	
CO2	1	2	3	1									3	3	
CO3	1	1	2	1	2								3	3	
CO4	1	1	1		3								3	3	

Program	B. Tech CSE(AI)												
Year	IV Semester VIII												
Course Name	Concepts of Deep Learning												
Code	NAI4801												
Course Type	CC L T P Credit												
Pre-Requisite	Knowledge of Machine Learning 3 0 0 3												
Course Objectives	fields. 2. This course emphasis is on analy develop deep learning models an engineering and social problems 3. Develop industry-oriented skills. 4. Understand the data needs of deep	 Provide basic concepts of deep learning and applications in various fields. This course emphasis is on analysing the fundamental issues to develop deep learning models and applied to solve complex engineering and social problems. Develop industry-oriented skills. Understand the data needs of deep learning. 											
Course Outcom	es												
CO1	To understand the basic concepts o	f deep lea	arning.										
CO2	Applies basic principles of deep lea analyse large dataset and demonstra formats.	_	-										
CO3	Analyse how to improve the learning make it more accurate.	ng quality	y of the n	nodel to									
CO4	Evaluate current scope and limitation Deep learning	ons, and	social im	pact of									

Module	Course Contents	Contact Hrs.	Mapped CO
1	INTRODUCTION: Definition of machine learning- Linear models and Nonlinear Models, introduction to machine learning algorithms, biological neuron, perceptron, Neural Nets: shallow network, training a network: back propagation, gradient descent loss functions, and - Neural networks as universal function approximates	30 Hours	CO1
2	DEEP NETWORKS: History of Deep Learning- Deep Learning Platforms. A Probabilistic Theory of Deep Learning Back propagation and regularization, normalization, Deep Boltzmann Machine, Hidden Markov model, Deep Networks Vs. Shallow Networks-Convolutional Networks- Auto Encoder and Generative Adversarial Networks (GAN), Semi- supervised Learning	30 Hours	CO2
3	OPTIMIZATION ALGORITHMS AND GENERALIZATION: Concept of Optimization, Optimization in deep learning—First Order, Second Order Methods, Stochastic Methods, Population Based Methods, Spatial Transformer Networks- Recurrent networks, LSTM— Recurrent Neural Network Language Models- Word-Level RNNs & Deep Reinforcement Learning - Computational & Artificial Neuroscience. CASE STUDY: Image net- Image Classification	30 Hours	CO3

- **1.** Cosma Rohilla Shalizi, Advanced Data Analysis from an Elementary Point of View, 2015
- 2. Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013.
- 3. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016.
- 4. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.

- 1. https://nptel.ac.in/courses/106106184
- 2. https://nptel.ac.in/courses/106106201

	Course Articulation Matrix														
PO- PSO	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	1	2	2	2	3							1	1	1	
CO2	3	3	1	2	1							2	2	1	
CO3	2	1	2	1	1								2	2	
CO4	1	2	1	3	2							1	1	1	

Program	B. Tech													
Year	Semester													
Course Name	Database Administration													
Code	OE43211													
Course Type	DE L T P Credit													
Pre-Requisite	Oracle Database	Oracle Database 3 1 0 4												
Course Objectives	2. To introduce students to the basic concepts and practice on the Orac3. To explain what a database mana components and models.	4 .To Create and understand the application of user roles, privileges, and the												
Course Outcom	es													
CO1	Understand the database approach a what a database management system models.		•											
CO2	Evaluate how relational algebra / requeries for data definition command SQL.													
CO3	Apply the process of normalization	Apply the process of normalization and design normalized relations												
CO4	Analyze what tables, indexes, and veffect.	views are	as well	as their in	nportance and									

Module	Course Contents	Contact Hrs.	Mapped CO
1	Design, model and install any database management systems by using Oracle database as sample. Plan, design, construct, control and manage database instances, database network environment	30 Hours	CO1
2	storage structures, usersecurity, database backup and recovery, database maintenance. Define and devise transaction management, concurrency control, crash recovery components	30 Hours	CO2
3	Examine and perform data base administration roles and operations by using Oracle database system as a sample.	30 Hours	CO3
4	Compare and contrast by examining the database systems and new trends in data storage, data retrieval and maintenance techniques.	30 Hours	CO4

- 1. Physical Database Design, Lightstone/Teorey/Nadeau, Morgan Kaufman, 2007, Publisher: **ELSEVIER**
- 2.Database Design and Implementation, Edward Sciore, Wiley, 20083.Databases and Transaction Processing, Lewis, Bernstein, Kifer, Addison Wesley, 2001

1. https://nptel.ac.in/courses/106105175

	Course Articulation Matrix														
PO-PSO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	
10-130	1	2	3	4	5	6	7	8	9	10	11	12	O 1	O2	
CO1	2	2										1	3	2	
CO2	2	2										1	2	2	
CO3	2	2	3									1	3	2	
CO4	2	2	2		2							1	3	2	

Program	B. Tech										
Year	Semester										
Course Name	Computational Intelligence										
Code	OE43221	OE43221									
Course Type	OE	L	T	P	Credit						
Pre-Requisite	Statistics Artificial Intelligence	$\begin{vmatrix} 3 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{vmatrix}$									
Course Objectives	 To know the fundamentals of rule To acquire the knowledge of articles To understand the concepts of every To expose the concepts of hybrid 	ficial net olutiona	iral netwo	orks. itations.	expert systems.						
Course Outcom	es										
CO1	Understand the concepts of Compu	tational l	ntelligen	ce.							
CO2	Analyse the searching techniques u	Analyse the searching techniques used in problem solving.									
CO3	Evaluate the learning of models use	ed in Cor	nputation	al Intellig	gence.						
CO4	Apply the Computational Intelliger	nce techn	iques.								

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction Introduction to Artificial Intelligence-Search-Heuristic Search- A* algorithm-Game Playing- Alpha-Beta Pruning-Expert systems-Inference-Rules-Forward Chaining and Backward Chaining- Genetic Algorithms. Knowledge Representation And Reasoning Proposition Logic, First Order Predicate Logic, Unification. Forward Chaining, Backward Chaining.	30 Hours	CO1
2	Resolution, Knowledge Representation, Ontological Engineering, Categories and Objects, Events, Mental Events and Mental Objects, Reasoning Systems for Categories, Reasoning with Default Information, Prolog Programming. Uncertainty Non monotonic reasoning-Fuzzy Logic, Fuzzy rules, fuzzy inference, Temporal Logic, Temporal Reasoning, Neural Networks, Neuro-fuzzy Inference.	30 Hours	CO2
3	Learning Probability basics, Bayes Rule and its Applications, Bayesian Networks, Exact and Approximate Inference in Bayesian Networks, Hidden Markov Models, Forms of Learning, Supervised Learning, Learning Decision Trees, Regression and Classification with Linear Models, Artificial Neural Networks, Nonparametric Models, Support Vector Machines, Statistical Learning, Learning with Complete Data, Learning with Hidden Variables, The EM Algorithm, Reinforcement Learning.	30 Hours	CO3
4	Intelligence And Applications Natural language processing, Morphological Analysis, Syntax analysis, Semantic Analysis, Language Models, Information Retrieval, Information Extraction, Machine Translation, Machine Learning.	30 Hours	CO4

- 1. Andries P Engelbrecht, "Computational Intelligence: An Introduction", Wiley-Blackwell
- 2. Eberhart, "Computational Intelligence", Elsevier, First Edition
- 3. Amit Konar, "Computational Intelligence: Principles, Techniques and Applications", Springer

- 1. https://www.udemy.com/course/cipython/
- 2. https://nptel.ac.in/courses/106102220
- 3. https://nptel.ac.in/courses/106105077

	Course Articulation Matrix														
PO-PSO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
10-150	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	2	2	2	3							1	2	2	
CO2	1	3	2	3	2							2	2	2	
CO3	3	3	3	2	3							1	1	1	
CO4	3	3	1	2	3							1	2	2	

Program													
Year	II	Sem	ester	III									
Course Name	Programming with Python	Programming with Python											
Code	NVC43241												
Course Type	VOC L T P Credit												
Pre-Requisite	C Programming	2	0	0	2								
Course Objectives	 To have strong foundation on Py Develop analytical ability on diff Mapping and respective conversion Programs. Capability to work with large and Using Python. 	ferent reation of rea	al world s al world j	situations. problems	to Python								
Course Outcom	es												
CO1	Understand and write simple Pythor	n progran	ns.										
CO2	Analysis of conditions in a problem	and imp	lement it	in progra	ım.								
CO3	Design of Python blocks using functall.	tions and	l their ev	aluation u	sing function								
CO4	Apply input/output with files in Pytland to apply OOPs concepts for ana		-	_	_								

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction: The Programming Cycle for Python, Python IDE, Interacting with Python Programs, Elements of Python, Type Conversion. Basics: Expressions, Assignment Statement, Arithmetic Operators, Operator Precedence, Boolean Expression. Conditionals: Conditional statement in Python (if-else statement, its working and execution), Nested-if statement and elif statement in Python, Expression Evaluation & Float Representation.	30 Hours	CO1, CO2
2	Loops: Purpose and working of loops, While loop including its working, For Loop, Nested Loops, Break and Continue. Function: Parts of A Function, Execution of A Function, Keyword and Default Arguments, Scope Rules. Strings: Length of the string and perform Concatenation and Repeat operations in it. Indexing and Slicing of Strings.	30 Hours	CO3, CO4

- **1.** Allen B. Downey, "Think Python: How to Think like a Computer Scientist", 2nd edition, Updated for Python 3, Shroff/O'Reilly Publishers, 2016 (http://greenteapress.com/wp/thinkpython/)
- **2.**Guido van Rossum and Fred L. Drake Jr, —An Introduction to Python Revised and updated for Python 3.2, Network Theory Ltd., 2011.

3. John V Guttag —Introduction to Computation and Programming Using Python", Revised and expanded Edition, MIT Press, 2013

- 1. https://onlinecourses.nptel.ac.in/noc20_cs70/preview
- 2. https://onlinecourses.nptel.ac.in/noc21_cs78/preview.

	Course Articulation Matrix														
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12	PSO 1	PSO2	
CO 1	1	1	2	1	1							1	1	1	
CO 2	1	2	2	2	1							2	2	2	
CO 3	1	1	2	2	1							2	2	2	
CO 4	1	2	2	2	1							2	2	2	

Program									
Year	I	Sem	ester	II					
Course Name	Artificial Intelligence								
Code	NVC43242								
Course Type	VOC	L	T	P	Credit				
Pre-Requisite	Data Structures & Algorithms, Fundamentals of Mathematics 2 0 0 2								
Course Objectives	 Understand the basics of the theory and practice of Artificial Intelligence as a discipline and about intelligent agents. The student will learn to apply knowledge representation techniques and problem solving strategies to common AI applications Study the concept behind genetic algorithm and its various operations. Learn the basic concept of fuzzy set theory. 								
Course Outcom	es								
CO1	Understand the evolution and vario	us appro	aches of	AI.					
CO2	Implementation of data stoarage,pregression, clustering etc.	ocessing.	visualiza,	ition, and	its use in				
CO3	Analyze the concepts of neural netv	works.							
CO4	Apply the concepts of face, object,	speech r	ecognitic	n and rob	ots.				

Module	Course Contents	Contact Hrs.	Mapped CO
1	An overview to AI The evolution of AI to the present, various approaches to AI, what should all engineers know about AI? Other emerging technologies, AI and ethical concerns, Existing sets of principles for AI, AI in the Organization Structure. Data & Algorithm History of Data, Data storage and importance of and its acquisition, the stages of data processing, data visualization, regression, prediction & classification, clustering & recommender systems.	30 Hours	CO1, CO2
2	Artificial Neural Networks Deep learning, Recurrent Neural Networks, Convolutional Neural Networks, The Universal Approximation Theorem, Generative Adversarial Networks, Speech recognition, Natural language understanding, Natural language generation, Chatbots, Machine Translation. Applications Image and face recognition, Object recognition, Speech Recognition besides Computer Vision, Robots, Applications, Investments in AI and AI in start-ups, AI Strategy and Governance (agenda).	30 Hours	CO3, CO4

- 1. S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach," Prentice Hall, Third Edition, 2009.
- **2.** I. Bratko,-Prolog: Programming for Artificial Intelligence, Fourth edition, Addison-Wesley Educational Publishers Inc., 2011.
- **3.** M. Tim Jones,-Artificial Intelligence: A Systems Approach (Computer Science) ||, Jones and Bartlett Publishers, Inc.; First Edition, 2008.

- **4.** Nils J. Nilsson, —The Quest for Artificial Intelligencell, Cambridge University Press, 2009.
- **5.** William F. Clocksin and Christopher S. Mellish, Programming in Prolog: Using the ISO Standard, Fifth Edition, Springer, 2003.
- 6. Gerhard Weiss, —Multi Agent Systems, Second Edition, MIT Press, 2013.
- 7. David L. Poole and Alan K. Mackworth,-Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press, 2010.

- 1. https://nptel.ac.in/courses/109106184
- 2. https://onlinecourses.nptel.ac.in/noc22 cs83/preview

	Course Articulation Matrix													
PO- PSO	PO1	PO 2	PO3	PO4	PO 5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO 1	PSO2
CO1	1	2	1		2							2	2	1
CO2		1	2	3									1	
CO3	2		2	2	1							1	1	2
CO4	1		2	1	1							1	1	2

Program	-										
Year	II	Sem	ester	IV							
Course Name	Cyber Crime and Computer Forens	Cyber Crime and Computer Forensics									
Code	NVC43243	NVC43243									
Course Type	VOC	L T P Cı									
Pre-Requisite	Basic Knowledge of Cyber Laws	2	0	0	2						
Course Objectives	 Acquainting students with Cybe Providing the students the Governance. To understand the different aspe Making the student aware of D Agencies for investigation of cy 	understa	mputer fo	orensic.							
Course Outcom	es										
CO1	Understand the basic concept of cy	bercrime	and con	nputer for	ensics.						
CO2	Analyze the virus, cyber-attacks an	d hackin	g in cybe	er applicat	ions.						
CO3	Evaluate the different computer for	ensic too	ols and te	chniques.							
CO4	Apply different methods for digital	evidence	e related	to system	security.						

Module	Course Contents	Contact Hrs.	Mapped CO
1	Definition of Cyber Crime: Introduction of Cyber Crime, Nature and Scope of Cyber Crime, Types of Cyber Crime, Social Engineering, Categories of Cyber Crime, Property Cyber Crime. Introduction to internet crimes: hacking and cracking, credit card and ATM frauds, emerging digital crimes and modules. Introduction to Cyber Crime Investigation, Investigation Tools, Discovery, Digital Evidence Collection, Evidence Preservation, E-Mail Investigation, E-Mail Tracking, IP Tracking, E-Mail Recovery.	30 Hours	CO1, CO2
2	Computer forensics analysis and Tools: Introduction to	30	CO3,
	Computer Forensics Forensic Software and Hardware,	Hours	CO4
	Analysis and Advanced Tools, Forensic Technology and		
	Practices, Forensic Ballistics and Photography, Face, Iris and		

	Fingerprint Recognition, Audio Video Analysis, Windows	
1	System Forensics, Linux System Forensics, Network	
	Forensics.	
	Email Security And Firewalls: PGP ,S/MIME, Internet	
	Firewalls for Trusted System- Roles of Firewalls, Firewall	
	related terminology, Types of Firewalls, Firewall designs	
	SET for E-Commerce Transactions.	

- **1**. Angus M. Marshall, "Digital forensics: Digital evidence in criminal investigation", John Wiley and Sons, 2008.
- **2.** Bernadette H Schell, Clemens Martin, "Cybercrime", ABC CLIO Inc, California, 2004. "Understanding Forensics in IT", NIIT Ltd, 2005.
- **3.** Nelson Phillips and EnfingerSteuart, "Computer Forensics and Investigations", Cengage Learning, New Delhi, 2009.

- 1. https://onlinecourses.swayam2.ac.in/cec20_lb06
- 2. https://nptel.ac.in/courses/106106178

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO12	PSO1	PSO2
CO1	1	2		1								1	2	
CO2	1	2	2	1								1	2	
CO3	2	1	2	2	2							2	2	2
CO4	1	1	1	2	2							2	2	2

Program	-							
Year	III	Semeste	er	V				
Course Name	Meta-Verse and Virtual Reality							
Code	NVC43244							
Course Type	VOC	L	T	P	Credit			
Pre-Requisite		2	0	0	2			
Course Objectives	used to interact in the Meta-verse. To create AR/VR interfaces using Use AR/VR interfaces as part of a customers to interact with a compaverse.	 used to interact in the Meta-verse. To create AR/VR interfaces using free software tools. Use AR/VR interfaces as part of a business solution to enable potential customers to interact with a company's products and services in the Meta-verse. Understand how all these fit into the Meta-verse as a whole, so as to create 						
Course Outcome	es							
CO1	Definition of the Meta-verse & the chain	interplay	between	n Web 3.0	and Block			
CO2	Use of NFTs in Meta-verse & Indu	stries usi	ing the M	leta-verse	technology			
CO3	Describe how VR systems work an	Describe how VR systems work and list the applications of VR.						
CO4	Explain the concepts of motion and	l tracking	g in VR s	ystems.				

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction and class policies, What is the Meta-verse? Demo of the Meta-verse ,The Meta-verse vs. Web 3.0 AR/VR and the Meta-verse Applications of the Meta-verse advantages and Challenges of the Meta-verse Types of the Meta-verse Block chain and the Meta-verse Crypto currency and the Meta-verse NFTs and the Meta-verse	30 Hours	CO1, CO2
2	Introduction to Virtual Reality ,Representing the Virtual World ,The Geometry of Virtual Worlds & The Physiology of Human Vision, Visual Perception & Rendering ,Motion & Tracking	30 Hours	CO3, CO4

- 1. Virtual Reality, Steven M. LaValle, Cambridge University Press, 2016.
- 2. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", Addison Wesley, USA, 2005.

- 1. https://elearn.nptel.ac.in/shop/iit-workshops/completed/metaverse/
- 2. https://archive.nptel.ac.in/courses/106/106/106106138/

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	2	1	1							1	1	1
CO2	1	2	2	2	1							2	2	2
CO3	1	1	2	2	1							2	2	2
CO4	1	2	2	2	1							2	2	2

Program	B. Tech CSE (AI)	B. Tech CSE (AI)								
Year	III	Sem	ester	VI						
Course Name	Robotics and Intelligent Systems			•						
Code	NPEC43911	NPEC43911								
Course Type	PCC L T P Credit									
Pre-Requisite	Soft Computing 3 0				3					
Course Objectives	 To understand Robotics, Control and Intelligent Systems. Analyse necessary Approaches and Techniques to build working mechanisms of robots. Acquire skill in robot task planning for problem solving. To understand Robotics and Intelligent Systems modules 									
Course Outcom	es									
CO1	Understand robot manipulators and	mobile	robots.							
CO2	Analyse robot controllers by using	appropri	ate metho	ods.						
СОЗ		Design basic robot intelligent sensor systems including static system learning (kinematics) and dynamic learning; and intelligent course recognition.								
CO4	Apply skills in identifying areas in deployed for enhancing productivit		turing wl	here robo	tics can be					

Module	Course Contents	Contact Hrs.	Mapped CO
1	Robotics Systems: Overview and Preliminaries, Biological Paradigms, Robotic Manipulators Sensors and Actuators, Low-Level Robot Control, Mobile Robots, Modelling Dynamic Systems Kinematics and Dynamics of Rigid Bodies, Continuous- and Discrete- time Dynamic Models, Linearization and Linear Response, Controller hardware/software systems, Sensor systems and integration.	30 Hours	CO1
2	Intelligent Systems and Control: General rule based expert systems- structure, characteristics, chaining inferences, conflict resolution, Fuzzy expert systems- fuzzy sets and their operations, linguistic variables, fuzzy rules, fuzzy inference, defuzzification, applications. Neural Networks: Learning processes, Single layer perceptron, Multilayer perceptron, Radial basis function neural networks, Self-organizing map neural networks Learning vector quantization neural networks.	30 Hours	CO2
3	Evolutionary and genetic algorithms- simulation of natural evolution, genetic algorithms, genetic operators, fitness function, applications. Simulation and control of dynamics systems- modeling using Simulink, PID controllers, implementation, fuzzy control, stability and performance evaluations. Goal-Oriented Control: Optimal Control, Robust, Adaptive, and Neural Control, Training Neural Networks, Task Planning and Multi-Agent Systems.	30 Hours	CO3, CO4

- 1. M. Negnevitsky, Artificial Intelligence A guide to intelligent systems Addison-Wesley, 2005.
- 2. M. Tarokh, Intelligent Systems and Control, Lectures
- 3. J. J. Craig, Introduction to Robotics, Addison Wesley Publishers, 2005.
- 4. Autonomous Robots, G. Bekey, MIT Press, 2005
- 5. Jones, Joseph L., Flynn, Anita, M., and Seiger, B.A., "Mobile Robots: Inspiration to Implementation", AK Peters, 1999
- 6. Schilling R. J., Fundamentals of Robotics: Analysis and Control, Prentice Hall, 2004
- 7. McKerrow P. J., Introduction to Robotics, Addison-Wesley.
- 8. Siegwart R. and Nourbakhsh I. R., Introduction to Autonomous Mobile Robots, The MIT Press, 2004.

Online Resources

1. https://onlinecourses.nptel.ac.in/noc21_me76/preview

	Course Articulation Matrix														
PO- PSO	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	1	2	1	3	1							2	2	1	
CO2	1	2	2	1	1							1	1	1	
CO3	2	2	1	1	3							1	2	2	
CO4	1	2	2	1	2							2	2	1	

Program	B. Tech CSE(AI)											
Year	III	III Semester VI										
Course Name	Introduction to Unmanned Aerial V	roduction to Unmanned Aerial Vehicle										
Code	NPEC43912											
Course Type	PEC	EC L T P Credit										
Pre-Requisite	Computer and Drone Basics	3	0	0	3							
Course Outcom	 Understand the parts and for regulations of UAV. Explain the concepts of Aero Model Aircrafts. Describe the working principle Demonstrate the design process 	odynamic	es, Propu	lsion &								
CO1	Understand the basic concepts of U	JAV.										
CO2	Analyze the application of sensors and	lactuators	s in UAV.									
CO3	Evaluate the loads acting on variou	s types o	f UAVs									
CO4	Apply concept of performance and	stability	analysis	of UAVs								

Module	Course Contents	Contact Hrs.	Mapped CO
1	Basics Of Flight: Different types of flight vehicles, Components and functions of an airplane Forces acting on Airplane Physical properties and structure of the atmosphere Aerodynamics, Air foil nomenclature, aerofoil characteristics, Angle of attack, Mach number, Lift and Drag, Propulsion and airplane structures. Basic Review & Characteristics of UAV Types: History, Classification and applications of UAVs, Unmanned Aircraft System (UAS), UAS composition, societal impact, future prospects. Types of Drones, Applications and Uses. Characteristics of Multi rotor vehicle, Fixed Wing vehicle, Flapping wing Vehicles and their applications, Defence.	30 Hours	CO1, CO2
2	Introduction To Design And Selection Of UAV Aspects Of Airframe Design: Conceptual design, preliminary design, detailed design, selection of UAV for particular requirement. Airframe configuration, Scale effects, packaging density, Aerodynamic design, Strength, stiffness and reliability requirements, flight and gust envelopes including manoeuvre loads, selection of power plants, Design for stealth PAYLOADS FOR UAV Classification of Payloads, camera, sensors, radars, various measuring devices classification of payload based on applications, Hyper spectral sensors, laser detection and range, synthetic aperture radar, thermal cameras, ultrasonic detectors, case study on payloads.	30 Hours	CO3
3	Avionics Hardware & Communication Autopilot, AGL-pressure sensors, servos, accelerometer, gyros, actuators, power supply, processor, integration, installation, configuration, and testing.	30 Hours	CO4

UAV Navigation And Guidance	
System Navigation, Dead Reckoning, Inertial, Radio	
Navigation, Satellite, Waypoint Navigation, Dijkstra's	
Algorithm, A-star Algorithm, UAV Guidance, Types of	
guidance, UAV communication systems, Ground control	
station, Telemetry, UAS future.	

- 1. Andey Lennon "Basics of R/C model Aircraft design" Model airplane new publication
- 2. Randal W. Beard and Timothy W. McLain: Small Unmanned Aircraft: Theory and Practice, Princeton University Press,2012
- 3. Kimon P. Valavanis: Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy, Springer,2007

Online Resources

	Course Articulation Matrix														
PO- PSO	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	1	2	1	1								2	2	1	
CO2	2	2	2	2	2							2	2	2	
CO3	2	2	2	2	2							2	2	2	
CO4	2	2	2	2	2							2	2	2	

Program	B. Tech CSE(AI)											
Year	III Semester VI											
Course Name	Sentiment Analysis											
Code	NPEC43913											
Course Type	PEC L T P Credit											
Pre-Requisite	Basics about Artificial 3 0 3 Intelligence 3											
Course Objectives	and emotion.Identify the sentiment of any do site.Recognize aspect-based opinion	2. Identify the sentiment of any document, web page or social networking										
Course Outcom	es											
CO1	Understand key issues involved in	the study	of seman	ntic fields	3							
CO2	Analyse the meanings of an express	sion in a	systemat	ic manne	r							
CO3	Evaluate simple problems in seman	ntic analy	sis									
CO4	Apply the basic goals of several di	fferent ap	proaches	s to semai	ntics.							

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction Need for Sentiment Analysis, Problem of Sentiment Analysis, Subjectivity, Stance, Words to Discourse, Pragmatics, Natural Language Processing Issues, Opinion Definition, Sentiment Analysis Tasks, Opinion Summarization, Types of Opinion, Subjectivity and Emotion. Document Sentiment Classification Sentiment Classification Using Supervised Learning Unsupervised Learning Rating Prediction, Cross-Domain Sentiment Classification, Cross Language Sentiment Classification, Sentence Subjectivity And Classification Subjectivity Classification, Sentence Sentiment Classification, Conditional Sentences, Sarcastic Sentences Cross, Language Subjectivity and Sentiment Classification Discourse Information for Sentiment Classification	30 Hours	CO1, CO2
2	Aspect Based Sentiment Analysis Aspect sentiment classification, Basic rules of opinions and Compositional Semantics, Aspect Extraction, Identifying Resource usage aspect, Simultaneous Opinion Lexicon Expansion and Aspect Extraction, Grouping aspects into categories, Entity, Opinion Hold and Timing Extraction, Co reference Resolution and Word Sense Disambiguation Aspect and Entity Extraction, Sentiment Lexicon Generation, Corpus Based Approach, Dictionary Based Approach, Desirable and Undesirable Facts.	30 Hours	CO3

3	Opinion Summarization & Tools for Sentiment Analysis Aspect Based Opinion Summarization, Improvements to Aspect-Based Opinion Summarization, Contrastive view Summarization, Traditional Summarization, Analysis of Comparative Opinions, Identifying Comparative Sentences, Identifying Preferred Entities, Opinion Search and Retrieval, Opinion Spam Detection, Types of Spam Detection, Supervised and Unsupervised Approach, Group Spam Detection. Detecting Fake or Deceptive Opinions, Quality of Review Quality as Regression Model, Other Methods, Case	30 Hours	CO4
	Detection. Detecting Fake or Deceptive Opinions, Quality of Review, Quality as Regression Model, Other Methods, Case Study, and Sentiment Analysis Applications Tools for		
	Sentiment Analysis.		

- **1.** Bo Pang and Lillian Lee, Opinion Mining and Sentiment Analysis: Now PublishersInc,2008.
- **2.** Roy De Groot, Data mining for Tweet sentiment classification Twitter sentiment, 2009

Online Resources

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO2
CO1	1	2	1	2	1								2	1
CO2	1	2		3	1								2	2
CO3	1	2	3	1	2								1	1
CO4	1	1	1	1	2								2	1

Program	B. Tech CSE										
Year	III Semester VI										
Course Name	Internet of Things										
Code	NPEC43914										
Course Type	PEC L T P Credit										
Pre-Requisite	Basic knowledge of AI and Computer Network 3 0 0 3										
Course Objectives	 Describe the IoT and Cloud architectures Determine the right sensors and communication protocols to use in a particular IoT system. Deploy Cloud Services using different cloud technologies. Implement cloud computing elements such virtual machines, web apps, mobile services, etc. 										
Course Outcom	es										
CO1	Understand general concepts of Int Recognize various devices, sensors		•	, ,	derstand) and						
CO2	To analyse various M2M and IoT a	rchitect	ures.								
CO3	Apply design concept to IoT solution	ons.									
CO4	Evaluate design issues in IoT applications sensors, actuators and Devices.	cations	and Creat	e IoT sol	utions using						

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to IoT: Sensing, Actuation, Networking Basics, Communication Protocols, Sensor Networks, Machine-to-machine Communications, IoT Definition, Characteristics. IoT Functional Blocks, Physical design of IoT, Logical design of IoT, Communication models & APIs.	30 Hours	CO1
2	M2M to IoT-The Vision-Introduction, From M2M to IoT, M2M towards IoT-the global context, A use case example, Differing Characteristics. Definitions, M2M Value Chains, IoT Value Chains, An emerging industrial structure forIoT. M2M vs IoT An Architectural Overview— Building architecture, Main design principles and needed capabilities, An IoT architecture outline, and standards considerations. Reference Architecture and Reference Model of IoT.	30 Hours	CO2, CO3
3	IoT Reference Architecture- Getting Familiar with IoT Architecture, Various architectural views of IoT such as Functional, Information, Operational and Deployment. Constraints affecting design in the IoT world- Introduction, Technical design Constraints. Domain-specific applications of IoT: Home automation, Industry applications, Surveillance applications, Other IoT applications, developing IoT solutions	30 Hours	CO4

1. Vijay Madisetti and Arsh deep Bahga, "Internet of Things (A Hands-on Approach)", 1st Edition, VPT, 2014

- 2. Francis da Costa, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", 1st Edition, Apress Publications, 2013.
- 3. CunoPfister, Getting Started with the Internet of Things, O'ReillyMedia, 2011, ISBN: 978-1-4493-9357

- 1. https://onlinecourses.nptel.ac.in/noc22_cs53
- 2. https://onlinecourses.swayam2.ac.in/arp19 ap52/preview

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO 6	PO7	PO8	PO9	PO1 0	PO11	PO1 2	PSO1	PSO2
CO1	2	1	1		1								2	1
CO2	3	2	1	2	2								1	2
CO3		3	2	1	2								2	1
CO4	1		2	1	1								2	1

Program	B. Tech CSE(AI)								
Year	III	Sem	ester	VI					
Course Name	Cyber Law and Security			•					
Code	NPEC43921								
Course Type	PEC	L	T	P	Credit				
Pre-Requisite	Knowledge of Computer Security	3	0	0	3				
Course Objectives	 To introduce the basics of information and web security and computer communication. To familiarize students with Cyber Laws and Security policies and Cryptography. To exhibit knowledge to secure corrupted systems, protect personal data, and secure computer networks in an Organization. To monitoring and analyzing the nature of attacks through cyber/computer forensics software/tools. 								
Course Outcom	es								
CO1	Understand the information system related to it and also about cyber see	-	• •	-	•				
CO2	Analyze about Application securi Threats in network.	ty, Data	security	and type	es of security				
CO3	Understand the importance of management issues indifferent appl			ion syste	em and risk				
CO4	Understand modern copyright, pate IT ACT so that they can protect t Laws.								

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to information systems, Types of information Systems, Development of Information Systems, Introduction to information security, Need for Information security, Threats to Information Systems, Information Assurance, Cyber Security, and Security Risk Analysis. Classification of Threats and Assessing Damages Security in Mobile and Wireless Computing, Security Challenges in Mobile Devices, authentication Service Security, Security Implication for organizations. Application security (Database, E-mail and Internet), Data Security Considerations- Backups, Archival Storage and Disposal of Data.	30 Hours	CO1
2	Security Technology-Firewall and VPNs, Security Threats-Viruses, Worms, Trojan Horse, Bombs, Trapdoors, Spoofs, E-mail viruses, Macro viruses, Malicious Software, Network and Denial of Services Attacks, Security Threats to E-Commerce-Electronic Payment System, e- Cash, Credit/Debit Cards. Digital Signature, Public Key Cryptography. Developing Secure Information Systems, Application Development Security, Information Security Governance & Risk Management, Security Architecture & Design Security	30 Hours	CO2
3	Issues in Hardware, Data Storage & Downloadable Devices, Physical Security of IT Assets, Access Control, CCTV and intrusion Detection Systems, Backup Security Measures. Laws, Investigation and Ethics, Cyber Crime, Information	30 Hours	CO3, CO4

Security and Law ,Types & overview of Cyber Crimes,	
Cyber Law, Issues in E-Business Management Overview of	
Indian IT Act, Ethical Issues in Intellectual property rights,	
Copy Right, Patents, Data privacy and protection, Domain	
Name, Software piracy, Plagiarism, Issues in ethical hacking.	

- 1. Godbole, "Information Systems Security", Willey,2008
- 2. Merkov, Breithaupt, "Information Security", Pearson Education, 2014
- Yadav, "Foundations of Information Technology", New Age, Delhi, 2006
 Schou, Shoemaker, "Information Assurance for the Enterprise", Tata McGraw Hill, 2006

- 1. https://nptel.ac.in/courses/106106129
- 2. https://onlinecourses.swayam2.ac.in/nou19 cs08/preview

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1									3	2	1
CO2	2	2	1	2	2							3	1	2
CO3	1	1	2	2	2							3	2	2
CO4	2	1	2	2	2							3	2	2

Program	B. Tech CSE(AI)									
Year	III	Sem	ester	VI						
Course Name	Computer Vision									
Code	NPEC43922									
Course Type	PCC L T P									
Pre-Requisite	Machine Learning, Computer Graphics 3 0 0 3									
Course Objectives	2. Appling Filtering and edge detec3. Appling deep leering for recogni videos	 Acquire knowledge Image Processing Appling Filtering and edge detection Appling deep leering for recognition and feature detection on image and videos 								
Course Outcom	es									
CO1	Understanding basics of Image Pro-	cessing a	and Phot	ometric						
CO2	Understanding Image Filtering and	edge de	tection.							
CO3	Understanding application of de- recognition	ep learr	ning in	image pr	ocessing and					
CO4	Understanding feature detection and	d motion	1.							

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to image processing, Image formation: Geometric primitives and transformations, Photometric image formation, digital camera, Image processing: Point operators, More neighborhood operators, Fourier transforms, Pyramids and wavelets, Geometric transformations, Model fitting and optimization, Variational methods and regularization, Markov random fields	30 Hours	CO1
2	Linear Filtering: Filter Kernels, Linear Filter Experiments, Linear Convolution Filtering, Selecting a Region-of-Interest, Adding Noise to Image, Mean Filtering, Median Filtering, Rank Order Filtering, Normal Distribution Filtering, Edges, Lines, Corners, Gaussian Kernel and Voronoï Meshes, Linear Function, Edge Detection, Double Precision Laplacian Filter, Enhancing Digital Image Edges, Gaussian Kernel, Gaussian Filter, Image Gradient Approach to Isolating Image Edges	30 Hours	CO2
3	Deep Learning: Supervised learning, Unsupervised learning, Deep neural networks, Convolutional neural networks, More complex models Recognition: Instance recognition, Image classification, Object detection, Semantic segmentation, Pose estimation, Video understanding, Vision and language Feature detection and matching: Edges and contours, Contour tracking, Lines and vanishing points, Segmentation Motion estimation: Translational alignment, Parametric motion, Optical flow, Layered motion Computational photography, High dynamic range imaging, Super-resolution, denoising, and blur removal,	30 Hours	CO3, CO4

Image matting and compositing, Video matting, Texture	
analysis and synthesis	

- 1. Richard Szeliski, "Computer Vision: Algorithms and Applications", 2nd Edition, September 30, 2022 Springer
- **2.** James F James F. Peters, "Foundations of Computer Vision, Computational Geometry, Visual Image, Structures and Object Shape Detection", 124, Springer
- **3.** E. R. Davies, "Computer and Machine Vision: Theory, Algorithms, Practicalities", Fourth Edition, 2012, Elsevier
- **4.** Ramesh Jain, Rangachar Kasturi, Brian G. Schunck,"MACHINE VISION", McGraw-Hill, Inc., ISBN 0-07-032018-7, 1995

Online Resources

1. https://onlinecourses.nptel.ac.in/noc21 ee23/preview

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO2
CO1	3	3	3	3	2							2	3	3
CO2	3	3	3	3	3							2	2	3
CO3	3	3	3	3	3							2	3	3
CO4	3	3	3	3	2							2	3	3

Program	B. Tech CSE(AI)								
Year	III	Sem	ester	VI					
Course Name	Recommender Systems								
Code	NPEC43923								
Course Type	PEC	L	T	P	Credit				
Pre-Requisite	AI and Machine Learning.	3	0	0	3				
Course Objectives	 Students learn about the basic concepts of recommender systems. To learn personalization algorithms, evaluation tools, and user experiences. To develop the concepts of Content-based Recommender Systems. Students study a Comprehensive Survey of Neighbourhood-based Recommendation Methods. 								
Course Outcom	es								
CO1	Understand the basic concepts behi	nd recon	nmender	systems.					
CO2	Analyze the Content-based Recommendation system.	mender S	systems a	and Know	ledge-based				
CO3	Evaluate the variety of approaches	for recon	nmender	systems.					
CO4	Analyze the different approaches to	wards th	e recomi	mender sy	vstem.				

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction: Introduction to Recommender Systems, Recommender Systems Function, Applications of recommendation systems, Issues with Recommender system, Data and Knowledge Sources, Recommendation Techniques, Recommender Systems and Human Computer Interaction, Recommender Systems as a Multi-Disciplinary Field, Application and Evaluation.	30 Hours	CO1
	Data Mining Methods for Recommender Systems, Collaborative Filtering: Data Preprocessing, Classification: Nearest Neighbors, Decision Trees, Rule-based Classifiers, Bayesian Classifiers, Artificial Neural Networks, Support Vector Machines, Ensembles of Classifiers.		
	Cluster Analysis: k-Means, Alternatives to k-means. User-based nearest neighbor recommendation, Item-based nearest neighbor recommendation, Model based and pre-processing based approaches, Attacks on collaborative recommender systems.		
2	Content-based Recommender Systems, Knowledge based recommendation: Basics of Content-based Recommender Systems. High level architecture of content-based systems, Advantages and drawbacks of content based filtering, Item profiles, Discovering features of documents, Obtaining item features from tags, Representing item profiles, Methods for learning user profiles, Similarity based retrieval, Classification algorithms. Knowledge representation and reasoning, Constraint based recommenders, Case based recommenders.	30 Hours	CO2, CO3

	Hybrid approaches, Evaluating Recommender System Recommender Systems and communities:		
3	Opportunities for hybridization, Monolithic hybridization design: Feature combination, Feature augmentation, Parallelized hybridization design: Weighted, Switching, Mixed, Pipelined hybridization design: Cascade Meta-level, Limitations of hybridization strategies. Introduction, General properties of evaluation research, Evaluation designs, Evaluation on historical datasets, Error metrics, Decision-Support metrics, User-Centred metrics. Communities, collaboration and recommender systems in personalized web search, Social tagging recommender systems, Trust and recommendations, Group recommender systems.	30 Hours	CO4

- **1.** Jannach D., Zanker M. and FelFering A., Recommender Systems: An Introduction, Cambridge University Press (2011), 1.
- **2.** Ricci F., Rokach L., Shapira D., Kantor B.P., Recommender Systems Handbook, Springer (2011), 1.
- **3.** Manouselis N., Drachsler H., Verbert K., Duval E., Recommender Systems For Learning, Springer (2013), 1.

Online Resources

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO 3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2		2	1								2	2	2
CO2	2	2	2	2	1							2	2	2
CO3	2	2	2	2	2							2	1	1
CO4	2	2	1	2	2							2	2	1

Program	B. Tech CSE(AI)											
Year	III Semester VI											
Course Name	Block Chain Technology	Block Chain Technology										
Code	NPEC43924											
Course Type	PEC L T P Credit											
Pre-Requisite	Distributed Systems, Computer Networking, Cryptography.	3	0	0	3							
Course Objectives	distributed applications. 2. Students should be able to unde applications developed using bl	 Students should be able to understand different types of Decentralized applications developed using block chain technology. Describe the basic bit coin and block chain application. 										
Course Outcom	es											
CO1	Understand about the distributed da	atabase a	nd functi	on.								
CO2	Analyse the basic concepts and struapplication.	ıctural as	pects of	block cha	in and							
CO3	To Understand the distributed cons	ensus an	d Nakam	oto conse	nsus.							
CO4	Explain the fundamental characteri	stics of	Crypto c	currency a	nd bit coin.							

Module	Course Contents	Contact Hrs.	Mapped CO
1	Basics: Distributed Database, Two General Problem, Byzantine General problem and Fault Tolerance, Hadoop Distributed File System, Distributed Hash Table, ASIC resistance, Turing Complete. Cryptography: Hash function, Digital Signature - ECDSA, Memory Hard Algorithm, Zero Knowledge Proof.	30 Hours	CO1
2	Blockchain: Introduction, Advantage over conventional distributed database, Block chain Network, Mining Mechanism, Distributed Consensus, Merkle Patricia Tree, Gas Limit, Transactions and Fee, Anonymity, Reward, Chain Policy, Life of Block chain application, Soft & Hard Fork, Private and Public block chain Distributed Consensus: Nakamoto consensus, Proof of Work, Proof of Stake, Proof of Burn, Difficulty Level, Sybil Attack, Energy utilization and alternate.	30 Hours	CO2, CO3
3	Crypto currency: History, Distributed Ledger, Bitcoin protocols - Mining strategy and rewards, Ethereum - Construction, DAO, Smart Contract, GHOST, Vulnerability, Attacks, Sidechain, Namecoin Crypto currency Regulation: Stakeholders, Roots of Bit coin, Legal Aspects-Crypto currency Exchange, Black Market and Global Economy. Applications: Internet of Things, Medical Record Management System, Domain Name Service and future of Block chain.	30 Hours	CO4

- 1. Andreas M. Antonopoulos, Mastering Bitcoin: Unlocking Digital Crypto currencies, "O'Reilly Media, Inc.", 03-Dec-2014 Business & Economics.
- 2. Dr. Gavin Wood, "ETHEREUM: A Secure Decentralized Transaction Ledger," Yellow paper. 2014.
- 3. Antony Lewis, The Basics of Bitcoins and Block chains: An Introduction to Crypto currencies and the Technology that Powers Them(Cryptography, Crypto Trading, Digital Assets, NFT) Paperback April 13,2021
- 4. Joseph J. Bambara, Paul R. Allen, Block Chain: A Practical Guide to Developing Business, Law And Technology.

- 1. https://onlinecourses.nptel.ac.in/noc22_cs44/preview
- 2. https://nptel.ac.in/courses/106104220

	Course Articulation Matrix													
PO-	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
PSO	1	102	103	104	103	100	107	100	109	1010	1011	1012	1301	1302
CO1	2		2	2	1							2	2	2
CO2	2	1	1	1	2							2	2	2
CO3	2	2	2	1	1							2	3	3
CO4	2	2	2	1	2							2	3	3

Program	B. Tech CSE (AI)											
Year	IV	Sem	ester	VII								
Course Name	System Modelling & Simulation											
Code	NPEC43931											
Course Type	PEC	EC L T P Credit										
Pre-Requisite	Basics about Simulation	3	0	0	3							
Course Objectives	 Introduce computer simulation to Provides the foundations for simulation. Implement and test a variety of so Learning Useful statistical mode 	the stu	dent to									
Course Outcom	es											
CO1	Understand the basic concepts of S	imulatior	1.									
CO2	Analyse the Useful statistical mode	Analyse the Useful statistical models.										
CO3	Evaluate Input Modeling and Data Collection.											
CO4	Apply Model Building and Verifica Validation.	ation,										

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction and Overview of Simulation; Advantages and Disadvantages of Simulation, Application areas, Steps in a Simulation Study, What is System, System Components, System Environment; Model of a system, Types of Models. Concepts in Discrete-Event Simulation: The Event Scheduling / Time-Advance Algorithm, World Views, Manual simulation Using Event Scheduling, List processing. Simulation in Java, Simulation in GPSS; Simulation in Spread sheet.	30 Hours	CO1, CO2
2	Useful statistical models discrete distributions; Continuous distributions; Poisson process; Empirical distributions, Queuing Models: Characteristics of queuing systems, Queuing notation; Long-run measures of performance of queuing systems; Networks of queues, Rough-cut modelling.	30 Hours	СОЗ
3	Input Modelling: Data Collection; Identifying the distribution with data, Parameter estimation, Goodness of Fit Tests, Fitting a non-stationary Poisson process, Selecting input models without data, Multivariate and Time-Series input models. Measures of performance and their estimation, Output analysis for terminating simulations; Output analysis for steady-state simulations. Model building, verification and validation; Verification of simulation models; Calibration and validation of models, optimization via Simulation	30 Hours	CO4

1. Zeigler B.P. Praehofer. H. and Kim I.G. "Theory of modeling and simulation", 2nd Edition. Academic press2000

2. Shannon, R. E., "System Simulation: the Art and Science", Prentice Hall Inc. 1990

Online Resources

1. https://onlinecourses.nptel.ac.in/noc21_me25/preview

	Course Articulation Matrix													
PO- PSO	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1		1	2	1								2	1
CO2	1	2		3	1								2	2
CO3	1	2	3		2								1	2
CO4	1	1	1	1									1	2

Program	B. Tech CSE (AI)										
Year	IV Semester VII										
Course Name	Embedded System Design										
Code	NPEC43932										
Course Type	PEC L T P Credit										
Pre-Requisite	Simulation Techniques	3	0	0	3						
Course Objectives	 To impart fundamental concepts To impart the design of an embe To impart the partition of a syste efficiently. To impart the Hardware/softwar 	dded sys m to har	tem. dware an	d softwar							
Course Outcom	es										
CO1	Understand the general process of	embedde	d system	developn	nent.						
CO2	Analyse important embedded syste	m termin	ology.								
CO3	Evaluate embedded system product	concept	ualization	n method	S.						
CO4	Apply common aspects of embedde	ed system	n develop	ment.							

Module	Course Contents	Contact Hrs.	Mapped CO
	Introduction to Embedded System Embedded systems, applications and purpose of embedded systems, processor embedded into a system, embedded hardware units and devices in a system, Characteristics and quality attributes of embedded systems.		
1	Embedded System Design Process and system architecture Requirements, Specifications, Architecture Design, Designing of Components, System Integration, Challenges in Embedded System Design. Instruction Set Architecture i.e., CISC and RISC instruction set architecture, Basic Embedded. Processor/Microcontroller Architecture with examples, Memory System Architecture (Caches, Virtual Memory	30 Hours	CO1, CO2
2	Programming Embedded Systems Structure of embedded program, infinite loop, compiling, linking and locating, downloading and debugging. Memory map, i/o map, interrupt map, processor family, external peripherals, memory - RAM, ROM, types of RAM and ROM, memory testing, CRC, Flash memory. Control and Status Registers, Device Driver, Timer Driver-Watchdog Timers, Embedded Operating System, Real-Time Characteristics, Selection Process.	30 Hours	CO3
3	Concept of Real time Operating Systems: Real-time Memory Management, Example Real-time OS, Types of RTOS, Basic design using RTOS, Micro/OS-II and Vx works, windows CE, OSEK, real-time Linux functions, case study: digital camera hardware and software architecture, embedded systems in automobile, embedded system for a smart card, mobile phone software for key inputs.	30 Hours	CO4

- 1. Embedded Systems Design by Steve Heath, II edition, Newnes publications, 2002.
- **2.** Embedded Systems Architecture: A Comprehensive Guide for Engineers and Programmers by Tammy Noergaard, Elsevier, 2005.
- **3.** Embedded Systems Architecture Programming and Design by Raj Kamal, II edition, Tata MC Graw-Hill,2011.
- **4.** Designing Embedded Systems with PIC Microcontrollers: principles and applications by Tim Wilmshurst, Elsevier, 2009.
- 5. Embedded Systems, Rajkamal, TataMcGraw-Hill, 2003

Online Resources

1. https://onlinecourses.nptel.ac.in/noc23 cs54/preview

	Course Articulation Matrix														
PO-	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
PSO	1														
CO1	1	1	2	2	1								2	3	
CO2	2	1	2	1	2								2	2	
CO3	2	2	1	1	2								3	3	
CO4	1	1	2	1	2								3	3	

Program	B. Tech CSE(AI)											
Year	IV	IV Semester VII										
Course Name	Evolutionary Multi-objective Optimization											
Code	NPEC43933											
Course Type	PEC L T P Credit											
Pre-Requisite	Fundamentals of AI	3	0	0	3							
Course Objectives	evolutionary optimization algorithmsTo develop the understanding of generationTo learn the application of evolution problems.	evolutionary optimization algorithms. 2. To develop the understanding of genetic computing. 3. To learn the application of evolutionary algorithms for solving optimization problems. 4. To explain the details of evolutionary algorithms such as GA and other										
Course Outcome	es											
CO1	Understand evolutionary algorithms.											
CO2	Analyse and develop understanding of gene	Analyse and develop understanding of genetic computing.										
CO3	Design evolutionary algorithms for solving	ng opt	imization	problems								
CO4	Applying genetic algorithm to Optimiza	tion M	lulti-obje	ctives								

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to Evolutionary Computation - Biological and artificial evolution, Evolutionary computation and AI, Different historical branches of EC, e.g., GAs, EP, ES, GP, etc., A simple evolutionary algorithm. Evolutionary strategies- Evolution in continuous variables. Transformations, Search Operators, Selection Schemes and mutation	30Hours	CO1
2	Genetic Algorithms - Representation, operators, and standard algorithm. The building block hypothesis and the schema theorem. Genetic Programming - Trees as individuals, Major steps of genetic programming, e.g., functional and terminal sets, initialisation, crossover, mutation, fitness evaluation, etc. Search operators on trees, Automatically defined functions, Issues in genetic programming, e.g., bloat, scalability, etc., Examples	30Hours	CO2
3	Multi-objective optimization and their combination with multi-criteria decision-making techniques. Classical methods for treating multi-objective problems, advanced methods based on Pareto-optimality. Evolutionary techniques for optimization problems with and without constraints. NSGA-II, SPEA-2, and MO-CMA-ES. Methods to compare algorithms including test functions and measures to analyze the obtained approximated Pareto-optimal set and front. Methods to cope with limitations to handle the dimensionality of the Pareto-front. Multi-criteria decision-making approaches.	30Hours	CO3, CO4

- **1.** Ashish M. Gujarathi, B. V. Babu," Evolutionary Computation: Techniques and Applications", CRC Press 2016.
- **2.** X. Yao (ed)," Evolutionary Computation: Theory and Applications", World Scientific Publ. Co., Singapore, 1999
- 3. Dan Simon, "Evolutionary Optimization Algorithms", Wiley, 2013

Online Resources

	Course Articulation Matrix														
PO- PSO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO2	
CO1	1	3	1		3								3	3	
CO2	1	2	2	1									3	3	
CO3	2	1	3	1	2								3	3	
CO4	1	2	1		3								3	3	

Program	B. Tech CSE (AI)									
Year	IV	Sem	ester	VII						
Course Name	Bioinformatics									
Code	NPEC43934									
Course Type	PEC	L	T	P	Credit					
Pre-Requisite		3	0	0	3					
Course Objectives	 Understanding methods and software tools for understanding biological data. To analyze fundamentals of evolution, molecular biology, and molecular evolution. To understand DNA, RNA important molecules, protein data, etc. their structure, replication and transcription. To Evaluate the biological databases which help in analyzing biological data and their interpretation. 									
Course Outcom	es									
CO1	To understand the basic concept of Biological data analysis	f Bioinfo	rmatics a	nd its sign	nificance in					
CO2	To Analyse properties of bio inform sequence-based searches.	natical da	atabases,	perform t	ext- and					
CO3	To Apply the major steps in pair widynamic programming.	To Apply the major steps in pair wise and multiple sequence alignment by								
CO4	To Evaluate different types of Biolo	ogical da	tabases.							

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction Bioinformatics objectives and overviews, Interdisciplinary nature of Bioinformatics, Data integration, Data analysis, Major Bioinformatics databases and tools. Metadata: Summary & reference systems, finding new type of data online. Molecular Biology and Bioinformatics: Systems approach in biology, Central dogma of molecular biology, problems in molecular approach and the bioinformatics approach, Overview of the bioinformatics applications	30 Hours	CO1
2	The Information Molecules and Information Flow Basic chemistry of nucleic acids, Structure of DNA, Structure of RNA, DNA Replication, -Transcription, - Translation, Genes-the functional elements in DNA, Analyzing DNA,DNA sequencing. Proteins: Amino acids, Protein structure, Secondary, Tertiary and Quaternary structure, Protein folding and function, Nucleic acid-Protein interaction; Perl: Perl Basics, Perl applications for bioinformatics- Boiler, Linux Operating System, Understanding and Using Biological Databases, Java clients, CORBA, Introduction to biostatics	30 Hours	CO2
3	Nucleotide sequence data	30	CO3,
	Genome, Genomic sequencing, expressed sequence tags, gene expression, transcription factor binding sites and single nucleotide polymorphism. Computational representations of molecular biological data storage techniques: databases (flat, relational and object oriented), and controlled vocabularies,	Hours	CO4

general data retrieval techniques: indices, Boolean search, fuzzy search and neighboring, application to biological data warehouses.

Biological data types and their special requirements

Sequences, macromolecular structures, chemical compounds, generic variability and its connection to clinical data, representation of patterns and relationships: alignments, regular expressions, hierarchies and graphical models.

Suggested Readings

- **1.** O'Reilly, "Developing Bio informatics computer skills", Indian Edition's Publication,2019
- **2.** Rastogi, Mendiratta, Rastogi, "Bioinformatics concepts, skills & Applications", CBS Publishers,2020
- 3. "Bioinformatics", Addison Wesley, 2021

- 1. https://nptel.ac.in/courses/102103044
- 2. https://nptel.ac.in/courses/102106065

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO 3	PO4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO1 2	PSO1	PSO2
CO1	2	2	1		2								2	1
CO2	1	2	3	2	2							1	1	2
CO3	2		3	3	2							2	2	3
CO4	1	1	2	2	2							2	2	2

Program	B. Tech CSE (AI)									
Year	IV	Sem	ester	VIII						
Course Name	Cloud Computing									
Code	NPEC43941									
Course Type	PEC	L	T	P	Credit					
Pre-Requisite	Basic knowledge of network	Basic knowledge of network 3 0 0 3								
	1. To understand the concepts of C	1. To understand the concepts of Cloud Computing.								
Course	2. To learn Cloud Computing Architecture.									
Objectives	3. To learn Taxonomy of Virtualization Techniques.									
	4. To acquire knowledge on Cloud	Deployn	nent mod	els.						
Course Outcom	es									
CO1	Understand the concept of virtua development of Cloud Computing.	lization a	and how	this has	enabled the					
CO2	To analyze fundamentals of cloud, cloud.	cloud Arc	hitectures	and types	of services in					
CO3	To evaluate and Understand scaling	To evaluate and Understand scaling, cloud security and disaster management								
CO4	To apply to explore some important of	cloud com	puting dr	iven comm	nercial systems.					

Module	Course Contents	Contact Hrs.	Mapped CO
1	Origins of Cloud computing, Cloud components, Evolution of Cloud Computing, Characteristics of Cloud Computing, Underlying Principles of Parallel and Distributed Computing, driving factors towards cloud, Architecture, How Cloud Computing Works, Role of Networks in Cloud computing, protocols used, Role of Web services, Service Models: IaaS, PaaS, SaaS, NaaS, Cloud Clients, Comparing cloud providers with traditional IT service providers.	30 Hours	CO1
2	Introduction, Cloud Reference Model, Architecture, Infrastructure Hardware as a Service, Platform as a Service, Software as a Service, Types of Clouds, Public Clouds, Private Clouds, Hybrid Clouds, Community Clouds, Economics of the Cloud, Open Challenges, Cloud Interoperability and Standards, Scalability and Fault Tolerance. Cloud deployment model: Public clouds, Private clouds, Community clouds, Hybrid clouds, advantages of Cloud computing. Inter Cloud Resource Management, Resource Provisioning and Resource Provisioning Methods Global Exchange of Cloud Resources, Security Overview, Cloud Security Challenges, Software-as-a-Service Security, Security Governance, Virtual Machine Security, IAM, Security Standards.	30 Hours	CO2
3	Hadoop, MapReduce, Virtual Box, Google App Engine, Programming Environment for Google App Engine, Open Stack, Federation in the Cloud, Four Levels of Federation, Federated Services and Applications, Future of Federation. Scientific Applications: Health care, Geoscience and Biology. Business and Consumer Applications- CRM and ERP, Social Networking, Media Applications and Multiplayer Online Gaming.	30 Hours	CO3,CO 4

- 1. Kai Hwang, Geoffrey C. Fox, Jack G. Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2012.
- 2. Ritting house, John W., and James F. Ransome, —Cloud Computing: Implementation, Management and Security, CRC Press, 2017
- 3. George Reese Cloud Application Architectures, First Edition, O"Reilly Media 2009.
- 4. Cloud Computing 2nd Edition by Dr. Kumar Saurabh from Wiley India 2012.
- 5. Cloud Computing (Principles and Paradigms), Edited by Rajkumar Buyya, James Broberg, Andrzej Goscinski, John Wiley & Sons, Inc. 2011
- 6. Cloud computing for dummies- Judith Hurwitz, Robin Bloor, Marcia Kaufman, Fern Halper, Wiley Publishing, Inc,2010

- 1. https://onlinecourses.nptel.ac.in/noc21 cs14/preview
- 2. https://archive.nptel.ac.in/courses/106/105/106105167

	Course Articulation Matrix													
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1		1								2	2
CO2	2	3	2	2								2	3	3
CO3	1	2	1	1	2							1	3	3
CO4	2	1	3	1									3	3

Program	B.Tech. CSE(AI)									
Year	IV	Sem	ester	VIII						
Course Name	Data Mining and Ware Housing									
Code	NPEC43942									
Course Type	PEC	L	T	P	Credit					
Pre-Requisite	DBMS	3	0	0	3					
Course Objectives	 To introduce the concept of data mining with in detail coverage of basic tasks, metrics, issues, and implication. Understand and implement classical models and algorithms in data warehouses and data mining To introduce the concept of data warehousing with special emphasis on architecture and design. Characterize the kinds of patterns that can be discovered by association rule mining, classification and clustering. 									
Course Outcom	es									
CO1	Understand the functionality of warehousing components.	the va	rious da	ıta minir	ng and data					
CO2	To analyze Appreciate the strength and data warehousing models.	s and lin	nitations	of various	s data mining					
CO3	To evaluate and Explain the analysi different methodologies used in dat	_								
CO4	To apply Compare different approximining with various technologies.	oroaches	of data	warehou	ise and data					

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to Data Mining: Introduction, What is Data Mining, Definition, KDD, Challenges, Data Mining Tasks, Data Preprocessing- Data Cleaning, Missing Data, Dimensionality Reduction, Feature Subset Selection, Discretization and Binarization, Data Transformation; Measures of similarity and dissimilarity- Basics.	30Hours	CO1
2	Data Warehouse and OLAP technology: Introduction to Data Warehouse, Differences between operational database systems and data Warehouse, Data Warehouse characteristics, Data Warehouse Architecture and its components, Extraction-Transformation-Loading, Logica (Multi-Dimensional), Data Modelling, Schema Design, star and snow-Flake Schema, Fact Constellation, Fact Table, Fully Addictive, Semi-Addictive, Non-Additive Measures; Factless-Facts, Dimension Table characteristics; Factless-Facts, Dimension Table characteristics; OLAP cube, OLAP Operations, OLAP Server Architecture- ROLAP, MOLAP and HOLAP.	30Hours	CO2
3	Association Rules: Problem Definition, Frequent Item Set Generation, The APRIORI Principle, Support and Confidence Measures, Association Rule Generation, APRIORI Algorithm, The Partition Algorithms, FP- Growth Algorithms, Compact Representation of Frequent Item Set-Maximal Frequent Item Set. Classification and prediction: What is Classification	30Hours	CO3, CO4

&Prediction, Issues regarding Classification and prediction,
Decision tree, Bayesian Classification, Classification by Back
propagation, Multilayer feed-forward Neura Network, Back
propagation Algorithm, Classification methods, K nearest
neighbor classifiers, Genetic Algorithm, Cluster
Analysis, Data types in cluster analysis, Categories of
clustering methods, Partitioning methods, Hierarchical
Clustering-, CURE and Chameleon, Density Based MethodsDBSCAN, OPTICS, Grid Based Methods-STING, CLIQUE.

Suggested Readings

- **1.** Data Mining-Concepts and Techniques- Jiawei Han, Micheline Kamber, Morgan Kaufmann Publishers, Elsevier, 2 Edition, 2006.
- **2.** Introduction to Data Mining, Pang-Ning Tan, Vipin Kumar, Michael Steinbanch, Pearson Education, 2016
- 3. Data Mining Techniques, Arun K Pujari, 3rd Edition, Universities Press, 2013
- 4. Data Ware Housing Fundamentals, PualrajPonnaiah, Wiley StudentEdition,2010
- 5. The Data Ware House Life Cycle Toolkit- Ralph Kimball, Wiley StudentEdition, 2008

- 1. https://onlinecourses.swayam2.ac.in/cec19_cs01/preview
- 2. https://nptel.ac.in/courses/106105174

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO 6	PO7	PO8	PO9	PO1 0	PO11	PO1 2	PSO1	PSO2
CO1	3	1	2	1	2								2	2
CO2	1	3	2	2	1								1	2
CO3		3	2	1	2								2	2
CO4	2		2	1	2								2	3

Program	B. Tech CSE(AI)										
Year	IV	Sem	ester		VIII						
Course Name	Introduction to Drones	Introduction to Drones									
Code	NPEC43943										
Course Type	PEC	PEC L T P Credit									
Pre-Requisite	Basic knowledge of sensors	3	0	0	3						
Course Objectives	types, and civilian small UAS aTo develop a firm understand safety and rule-compliance requTo understand basic UAS elements	types, and civilian small UAS applications 2. To develop a firm understanding of UAS operational safety and rule-compliance requirements									
Course Outcom	es										
CO1	To be able to understand typical civ	ilian lov	v-cost UA	AS system	is.						
CO2	To analyze and comply FAA regula	tions on	small UA	S operati	ons.						
CO3	To evaluate integrate of typical mis civilian low cost UAS systems.	To evaluate integrate of typical mission sensors in typical civilian low cost UAS systems.									
CO4	To be able to apply to create UAS r join UAS work force.	elated er	ngineering	g practice	/service or to						

Module	Course Contents	Contact Hrs.	Mapped CO
1	Fundamentals of Flights:- Introductions, Understanding geospatial technology, UAS platform overview, UAS flight demo, FAA regulations, UAS safety, Flight checklists, Roles and responsibilities of personnel involved in flight operations, Different types of flight vehicles, Components and functions of an airplane, Forces acting on Airplane, Physical properties and structure of the atmosphere, Aerodynamics, Airfoil nomenclature, aero foil characteristics, Angle of attack, Mach number, Lift and Drag - Propulsion and air plane structures.	30Hours	CO1
2	Unmanned Aerial Vehicle:-Difference between aircraft and UAV, Parts and functions of Fixed, Rotorcraft and flapping wing UAV-various History of UAV's, Types of Drones, Applications and Uses. Characteristics of Multi rotor vehicle, Fixed Wing vehicle, Flapping wing Vehicles and their applications, Defence, Civil, Environmental monitoring (physical, chemical and biological).	30Hours	CO2
3	Payloads For UAV:-Payloads, Classification of Payloads, camera, sensors, radars, various measuring devices ,classification of payload based on applications , Hyper spectral sensors ,laser detection and range , synthetic aperture radar, thermal cameras ,ultra sonic detectors ,case study on pay loads. Launch and Recovery:-Launching systems, UAV Launch Methods for Fixed, Wing Vehicles, Vertical Takeoff and Landing UAV Launch, Recovery systems. UAV Navigation And Guidance Systems:- Navigation, Dead Reckoning, Inertial, Radio Navigation,	30Hours	CO3, CO4

Satellite, Way point Navigation. Dijkstra's Algorithm, A-	
star Algorithm, UAV Guidance, Types of guidance, UAV	
communication systems, and Ground control station,	
Telemetry, UAS future.	
• *	

- 1. Andey Lennon "Basics of R/C model Aircraft design" Model airplane news publication, 2016.
- 2. Theory, Design, and Applications of Unmanned Aerial Vehicles- by A. R. Jha Ph.D. (Author), 2016.
- 3. Unmanned Aerial Vehicles- Editors: Valavanis, K., Vachtsevanos, George J. (Eds.), 2014.
- 4. Jane's Unmanned Aerial Vehicles and Targets -by Kenneth Munson (Editor), 2010.

Online Resources

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO2
CO1	3	2	1	2	2								2	1
CO2		3	2	1	1								1	2
CO3	1	1	2	1	2								1	1
CO4	2	2	1	3	1								2	2

Program	B. Tech CSE(AI)									
Year	IV	Sem	ester	VIII						
Course Name	Computer Forensics									
Code	NPEC43944									
Course Type	PEC	L	T	P	Credit					
Pre-Requisite	Basic knowledge of operating system									
Course Objectives	the data.2. To understand the file logs, even3. To understand the importance of their impact, file recovery process	 To understand the file logs, event file logs, working of the files system. To understand the importance of identification of evidence with their impact, file recovery process. To understand the application of various computer forensics 								
Course Outcom	es									
CO1	To Understand proper documentati	on over t	he forens	sics analy	sis process.					
CO2	To analyze the representation and omodern computers.	organizat	ion of da	ta and me	etadata in					
CO3	To evaluate working process of Wi application.	ndows as	nd Linux	file syste	ms and its					
CO4	To apply tool recover deleted files, images.	extract h	nidden da	ita, and al	so create disk					

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to Computer Forensics: Computer Forensics, history of computer forensics, Types of Computer Forensics Technology, resources required to develop computer forensics, Computer Investigation. Computer Forensics System: Window and artefact Window File system system-File allocation, File allocation table, Registry, Event logs, Executable Window, prefetch file. Linux Systems and artefacts Linux Systems: Linux File Systems, File System Layer, Metadata Layer, Data Unit Layer, Journal Tools, Deleted Data, Linux Logical Volume Manager, Linux Boot Process and Services, Linux System Organization and Artefacts, Partitioning, File system Hierarchy	30 Hours	CO1, CO2
2	Computer Forensics Analysis: Evidence Identification, Data Seizure, Replication and avoiding of evidence, Digital image verification and authentication, Reconstruction of Past Evidence- fighting against macro threats, Information safety, Network Forensics and investigating logs, network Intrusion and crime, Network Traffic investigation, Tactics of military-terrorist and private company; Forensics Identification and Analysis of surveillance Devices.	30 Hours	CO3
3	Computer Forensics Technology: Need of evaluation Tools, Operation performed by Techniques, Types of Computer Forensics Techniques-Software techniques, Command Line techniques, Unix/Linux Techniques, GUI based techniques, Hardware based Techniques- Forensics Workstation, Write Blocker,	30 Hours	CO4

Comparison of Techniques; Cyber Forensics techniques and	
Case study.	

- 1. Cory Altheide, Harlan Carvey, Digital Forensics with Open Source Tools, Syngress imprint of Elsevier.
- 2. Bill Nelson, Amelia Phillips, Christopher Steuart, "Guide to Computer Forensics and Investigations", Fourth Edition, Course Technology.
- 3. MariE-Helen Maras, "Computer Forensics: Cyber criminals, Laws, and Evidence", Jones & Bartlett Learning; 2nd Edition,2014.

- 1. https://onlinecourses.swayam2.ac.in/cec20_lb06/preview
- 2. https://nptel.ac.in/courses/106106178

	Course Articulation Matrix														
PO- PSO	PO1	PO 2	PO3	PO4	PO 5	PO6	PO7	PO8	PO 9	PO10	PO11	PO1 2	PSO1	PSO2	PSO3
CO1	3	2	1	1	1									2	1
CO2	1	3	1		2									2	1
CO3	2	1	2	1	2									1	2
CO4	1	2	3	2	1									1	2

Program	B.Tech			_				
Year	IV	Sem	ester	VIII				
Course Name	Disaster Management							
Code	OE33101							
Course Type	Theory	eory L T P C						
Pre- Requisite	Environmental Studies, Chemistry 4 0 0							
Course Objectives	 Study about basic concept of environmental chemistry. Learn about the various parameters of water and wastewater. How to examine microbial contamination of water. Study about the different – phases of microbial growth. 							
Course Outco	omes							
CO1	1. Introduction to the basic principles	of envir	onmenta	l chemistr	y.			
CO2	2. Detailed knowledge of different pa	rameter	of water	and waste	water.			
CO3	3. To know the thermodynamics mici	robial sys	stem.					
CO4	4. Know the aerobic and anaerobic prowastewater.	rocess inv	volved in	the water	and			

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction Concept of Environmental Hazards, Environmental stress & Environmental Disasters. Types of Environmental hazards & Disasters: Natural hazards and Disasters, Volcanic Hazards/ Disasters, - Causes and distribution of Volcanoes, - Hazardous effects of volcanic eruptions, - Environmental impacts of volcanic eruptions, Earthquake Hazards/ disasters, - Causes of Earthquakes, - Distribution of earthquakes, - Flood control measures (Human adjustment, perception & mitigation), Droughts: - Impacts of droughts, - Drought hazards in India, - Drought control measures.	30 hrs.	CO1
2	Mechanics & forms of Soil Erosion Factors & causes of Soil Erosion, Conservation measures of Soil Erosion, Chemical hazards/ disasters Release of toxic chemicals, nuclear explosion, Sedimentation processes, - Global Sedimentation problems, Regional Sedimentation problems, Sedimentation & Environmental problems, Corrective measures of 23 Erosion & Sedimentation, Biological hazards / disasters, Population Explosion	30 hrs.	CO2
3	Stages Pre- disaster stage (preparedness)- Preparing hazard zonation maps, Predictability/ forecasting & warning, Preparing disaster preparedness plan, Land use zoning, Pre-disaster stage (mitigation) Disaster resistant house construction, Population reduction in vulnerable areas, Awareness . Emergency Stage:-Rescue training for search & operation at national & regional level, Immediate relief, and Assessment surveys. Post Disaster	30 hrs.	CO3

	stage, Rehabilitation- Political Administrative Aspect	
4	Relief Measures Provision of Immediate relief measures to disaster affected people, Prediction of Hazards & Disasters, Measures of adjustment to natural hazards Mitigation discuss the work of following Institution, Meteorological observatory, Seismological observatory, Hydrology Laboratory, Industrial Safety inspectorate, Institution of urban & regional planners, Chambers of Architects, Engineering Council, National Standards Committee, Integrated Planning Contingency management Preparedness Education on disasters, Community involvement, The adjustment of Human Population to Natural hazards & disasters	CO4

- Singh. Savinder, "Environmental Geography", Prayag Pustak Bhawan.
 Sharma V.K., "(Ed) Disaster Management", IIPA Publication New Delhi.

- 1. https://nptel.ac.in/courses/124107010
- 2. https://www.youtube.com/watch?v=Eh8dAmiJ-fo

	Course Articulation Matrix													
PO- PSO	PO1	PO 2	PO3	PO4	PO 5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO 1	PSO2
CO1	3	2		2		2	2					2		
CO2	3	2		2		2	2					2		
CO3	3	2		2		2	2					2		
CO4	3	2		2		2	2					2		

Program	B.Tech								
Year	IV	Sem	ester	VII					
Course Name	NON-CONVENTIONAL ENERG	Y RESC	URCES						
Code	OE43302								
Course Type	OE	L	T	P	Credit				
Pre-Requisite	Knowledge of Engineering	3	1	0	4				
Course Objectives	 To develop a strong foundation in the field of Non-Conventional energy resources. The subject gives the knowledge about different forms of Non-Conventional energy. 								
Course Outcom	es								
CO1	To understand about Non-Conventi	onal ene	rgy resou	irces.					
CO2	Evaluate solar energy, make use involved in gathering solar energy a	-							
СОЗ	Study the components, kinds, a conversion system to gain an under	_							
CO4	To understand about examples of ways to use it.	To understand about examples of ocean energy and describe the practical ways to use it.							

Module	Course Contents	Contact Hrs.	Mapped CO
	Introduction: Indian and global energy sources, Energy exploited, Energy planning, Introduction to various sources of energy, Solar thermal, Photovoltaic, Water power, wind energy, Biomass, Ocean thermal, Tidal and wave energy, Geothermal energy.		
I	Solar radiations: Extra-terrestrial radiation, Spectral distribution, Solar constant, Solar radiations on earth, Measurement of solar radiations, Solar radiation geometry, flux on a plane surface, latitude, declination angle, surface azimuth angle, hour angle, Zenith angle, solar altitude angle expression for angle between incident beam and the normal to a plane surface (no derivation), Local apparent time, Apparent motion of sun, Day length.	30 Hours	CO1
II	Solar energy: Solar thermal power and its conversion, Solar collectors, Flat plat, Concentric collectors, Cylindrical collectors, Thermal analysis of solar collectors. Solar energy storage, Different systems, solar pond. Applications, Water heating, Space heating & cooling, Solar distillation, solar pumping, solar cooking, Greenhouses, Solar power plants.	30 Hours	CO2
	Biogas: Photosynthesis, Bio gas production Aerobic and anaerobic bio-conversion process, Raw materials, Properties of bio gas, Transportation of bio gas, bio gas plant technology & status, Community biogas plants, Problems involved in bio gas production, Bio gas applications, Biomass conversion techniques, Energy plantation, Fuel		

	properties.		
	Wind energy:		
	Properties of wind, Availability of wind energy in India, wind Velocity, win machine fundamentals, Types of wind machines and their characteristics, Horizontal and Vertical axis wind mills, Elementary design principles, Coefficient of performance of a wind mill rotor, Aerodynamic considerations in wind mill design, Selection of a wind mill, Economic issues, Recent development.		
III	Electrochemical effects and fuel cells: Revisable cells, Ideal fuel cells, other types of fuel cells, Efficiency of cells, Thermions systems.	30 Hours	CO3
	Tidal power: Tides and waves as sources of energy, Fundamentals of tidal power, Use of tidal energy Limitations of tidal energy conversion systems.		
	Hydrogen Energy: Properties of hydrogen in respect of its use as source of renewable energy, Sources of hydrogen, Production of hydrogen, Storage and transportation, Problems with hydrogen as fuel.		
	Thermoelectric systems: Kelvin relations, power generation, Properties of thermoelectric materials, Fusion Plasma generators.		
IV	Geothermal energy: Hot springs, Steam ejection, Principal of working, types of geothermal station with schematic representation, Site selection for geothermal power plants. Advanced concepts Problems associated with geothermal conversion.	30 Hours	CO4
	Ocean energy: Principal of ocean thermal energy conversion, Power plants based on ocean energy, problems associated with ocean thermal energy conversion systems.		

- 1. 'Renewable energy sources and conversion technology' by Bansal Keemann, Meliss," Tata McGraw Hill.
- 2. 'Non-Conventional energy Sources' by Rai G.D, Khanna Publishers.
- 3. 'Non-conventional Energy' by Ashok V. Desai, New Age International Publishers Ltd.

Online Resources

1. NPTEL (SWAYAM) https://archive.nptel.ac.in/courses/121/106/121106014/

2. IEEE Papers

A. Ashwin Kumar, "A study on renewable energy resources in India," *2010 International Conference on Environmental Engineering and Applications*, Singapore, 2010, pp. 49-53, doi: 10.1109/ICEEA.2010.5596088.

	Course Articulation Matrix														
PO- PSO	P O 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	
CO1	3	3	2	3	2	3							2	2	
CO2	3	3	2	3	3	3							1	2	
CO3	2	2	3	2	3	2							2	1	
CO4	3	2	3	2	3	2							2	1	

Program	B. Tech	B. Tech										
Year	IV	Semester VIII										
Course Name	Quality Management											
Code	OE43501											
Course Type	OE L T P Cred											
Pre-Requisite	Intermediate School Education 3 1 0											
Course Objectives	 To have knowledge of Quality concept & Quality Management. To be aware about the importance Quality Management. To have knowledge about Control charts. To have knowledge of ISO 9000 series. 											
Course Outcom	es											
CO1	Know the importance of Quality M	lanageme	ent Tools	and their	applications.							
CO2	Increase the productivity and effici Quality Management Tools.	ency of c	organizati	on with the	he help of							
CO3	Can develop new types Quality Ma	ınagemer	t Techni	ques.								
CO4	Apply Taguchi method & JIT method	od for var	ious appli	ications.								

Module	Course Contents	Contact Hrs.	Mapped CO
1	Quality Concepts: Evolution of Quality control, Concept change, TQM Modern concept, Quality concept in design, Review off design, Evolution of prototype. Control on Purchased Product: Procurement of various products, Evaluation of supplies, Capacity verification, Development of sources, Procurement procedure. Manufacturing Quality: Methods and Techniques for manufacture, Inspection and control of product, Quality in sales and services, Guarantee, analysis of claims.	30 Hours	CO1
2	Quality Management: Organization structure and design, Quality function, Decentralization, Designing and fitting organization for different types products, Economics of quality value and contribution, Quality cost, Optimizing quality cost. Human Factor in Quality: Attitude of top management, Co-operation, of groups, Operators attitude, responsibility, Causes of operator's error and corrective methods.	30 Hours	CO2
3	Control Charts: Theory of control charts, Measurement range, Construction and analysis of R charts, Process capability study, Use of control charts. Attributes of Control Charts: Defects, Construction and analysis off-chart, Improvement by control chart, Variable sample size, Construction and analysis of C-chart.	30 Hours	CO3
4	Defects Diagnosis and Prevention: Defect study, Identification and analysis of defects,	30 Hours	CO4

Corrective measure, Factors affecting reliability, MTTF,		
Calculation of reliability, Building reliability in the product,		
Evaluation of reliability, Interpretation of test results,		
Reliability control, Maintainability, Zero defects, quality		
circle.		
IS0-9000anditsconceptofQualityManagement:		
ISO9000series, Taguchi method, JIT in some details		

- 1. Concurrent Engineering Kusiak John Wiley.
- 2. Concurrent Engineering Menon Chapman & hall.
- 3. Quality Control & Reliability Analysis Bijendra Singh, Khanna Publications

- 1. https://archive.nptel.ac.in/courses/110/104/110104080/
- 2. https://nptel.ac.in/courses/110104085

	Course Articulation Matrix														
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1		2	2				1		2	2			
CO2	2	2	1	3	2				2	1	2	2			
CO3	2	3	1	1	3						1	2			
CO4	3	3	3	3	3				1		1	2			

Program	B. Tech										
Year	IV										
Course Name	Concepts of Climate Smart Agric	culture									
Code	OE43102										
Course Type	Theory L T P Credit										
Pre-Requisite	Environmental Studies, Disaster Management	3	1	0	4						
Course Objectives	 To give knowledge about meteorology, atmosphere, and climate smart agriculture. To give knowledge about soil formation and its physicochemical properties. To know about climate change and its possible impacts. To know about climate challenges and water management. 										
Course Outcom	es										
CO1	To know about meteoro agriculture.	logy, at	mosphere	e, and c	limate smart						
CO2	2. To understand soil formation	n and its	physicoc	chemical 1	properties.						
CO3	3. To know climate change an	d its pos	sible imp	acts.							
CO4	4. To know challenges due to	climate o	change an	nd water n	nanagement.						

Module	Course Contents	Contact Hrs.	Mapped CO
1	Climate relations Meteorology and atmosphere, structure and composition of atmosphere, atmospheric inputs (acid rain, dust), water-soil-plant relations, pollution in the environment and its effects on human, plant and soil, climate smart agriculture and greenhouse gases.	30 hrs.	CO1
2	Soil formation and its physicochemical properties Soil forming rocks and minerals, their classification and composition, important soil physical properties; and their importance; soil particle distribution; soil organic matter – its composition and decomposition, effect on soil fertility; soil reaction – acid, saline and sodic soils. Soil nutrients, Influence of physicochemical properties of soil on plant health. Effects of macro and micro nutrients on plant growth.	30 hrs.	CO2
3	Climate change and its possible impacts Historical examples of crop failure, reasons, and its social consequences, need and strategy of development of climate smart crop, successful examples of climate smart crops, effects of climate on crops, crop growth and development in relation to environmental stress -water and temperature stress, nutrient stress and resistance mechanism.	30 hrs.	CO3
4	Challenges due to climate change and water management Challenges arising out of climate change and case studies (e.g., cultivating Durum wheat in Ethiopia and its mitigation). Advances of crop water management for climate smart crop production, examples of case studies. Rain water harvesting, organic farming, and use of high-quality varieties of crops.	30 hrs.	CO4

- 1. Manohar, K.R. and Iga Thinathane. C. Green House Technology and Management, B.S.Publications, Hyderabad.
- 2. Benkeblia Noureddine (Ed) (2020) Climate Change and Crop Production: Foundations for Agroecosystem Resilience; CRC Press
- 3. Hebbar, KB, Naresh Kumar, S. and Chowdappa, P. (2017). Impact of Climate Change on Plantation Crops (Eds). P 260. Astrel International –Daya Publishing House, New Delhi, India, ISBN: 9789351248330.
- 4. Brady, N. E., The Nature and Properties of Soils, MacMillan Publishing Co., INC., 1984.
- 5. Bohn, H. L., McNeal, B. L., O'Connor, G. A., Soil Chemistry, John Wiley and Sons, New York, 1979.
- 6. M.M. Rai, Principles of Soil Science, 4th ed., Macmillan India Limited, Delhi, 2002.
- 7. Henry D. Foth and Boyd G. Ellis, Soil Fertility, 2nd edition, Lewis Publishers, New York, 1997.

Online Resources

- **2.** U.M. Sainju, R. Dris and B. Singh, Mineral Nutrition of Tomato, 2003, Available: www.aseanfood.info/Articles/11019991.pdf.
- **3.** Making climate-smart agriculture work for the poor (www.worldagroforestry.org/publication/making-climate-smart-agriculture-work-poor

4.

	Course Articulation Matrix													
PO- PSO	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2		2	2					2		
CO2	3	2	2	2		2	2					2		
CO3	3	2	2	2		2	2					2		
CO4	3	2	2	2		2	2					2		