No. of Printed Pages: 04

Following Paper ID and Ro	Il No. to	be filled	in your	Answer	Book
PAPER ID: 33314	Roll No.			TT	Jook.

B. Tech Examination 2021-22 (Even Semester)

ELECTRO-MECHANICAL ENERGY CONVERSION-I

Time: Three Hours

[Maximum Marks: 60

Note: (i) Attempt all questions.

SECTION-A

- 1. Attempt all parts of the following:
- $8 \times 1 = 8$
- (a) Define energy and co-energy.
- (b) Differentiate between mechanical angle and electrical angle.
- (c) Which part of dc machine is laminated? Why?
- (d) What do you mean by pole pitch?
- . (e) Write the expression of torque for singly excited system.

- (f) A 6-pole dc machine has an armature with 90 slots and 8 conductors per slot and runs at 1000 rpm. The flux per pole is 0.05 wb. Determine the induced emf for wave wound armature.
- (g) What parameters can be calculated by indirect loading tests on transformer?
- (h) Draw the circuit diagram for conversion of a two winding transformer into an additive polarity autotransformer.

SECTION-B

- 2. Attempt any two parts of the following: $2 \times 6 = 12$
 - (a) What is the significance of co-energy? Show that the field energy in a linear magnetic system is given by:

$$Wf = \frac{1}{2}Li^2 = \frac{1}{2}\psi i = \frac{1}{2L}\psi^2$$

(b) Explain the methods to overcome the adverse effects of the armature reaction.

- (c) What is difference between starter and controller? Explain the function of no-volt release in a three point starter. What would happen if the external resistance for starting the dc motor is left in the armature circuit?
- (d) What is all dat efficiency of a transformer? How to calculate it? Explain with example?

SECTION-C

Note:- Attempt all questions. Attempt any two parts from each questions. $5 \times 8=40$

- 3. (a) Explain the concept of electromechanical energy conversion with neat diagram.
 - (b) Show that torque developed in doubly excited machine is equal to the rate of increase of field energy with respect to displacement at constant currents.
 - (c) Explain flow of energy in electronmechanical devices for both generating and motoring action.
- 4. (a) Explain the construction of a 2 pole dc machine.
 - (b) Distinguish between simplex lap and simplex lap and simplex wave winding with suitable diagram

- and explain the terms back pitch, front pitch, winding pitch, commutator pitch.
- (c) Discuss in details the process of commutation in dc machines.
- 5. (a) Explain Ward-lenonard method of speed control of dc motors. Why a dc series motor cannot be started on no load?
 - (b) Derive an expression for the torque developed in a dc motor.
 - (c) Enumerate the various losses in a dc machine. which of these losses are constant? Derive expression for the efficiency of a dc generator and dc motor.
- 6. (a) Derive an expression for the emf induced in a transformer winding. Show that emf per turn in primary is equal to e. m. f. per turn in secondary.
 - (b) Develop the phasor diagram of a single phase transformer under lagging-power load.
 - (c) In Sumpner's test, the reading of the wattmeter recording the core lesser, remains unaffected when low voltage is injected in the secondary series circuit. Explain.