S.No. : 166

5.70	Pages : 04		A Book
No. of Printed	ID and Roll No.	to be filled in your	Answer Book.
Following Pape	Roll		
OADER III	: 33408 No.		

B. Tech. Examination 2021-22

(Even Semester)

SIGNALS AND SYSTEMS

Time: Three Hours] [Maximum Marks: 60

Note: Attempt all questions.

SECTION-A

1. Attempt all parts of the following:

 $8 \times 1 = 8$

(a) Draw the waveform of the following signal:

$$x(t) = u(-2t+1)$$

(b) Determine whether the system is time invariant or not:

$$y(n) = x(-n)$$

(c) Evaluate the step response for the LTI system represented by the following impulse response:

 $h(n) = (-\frac{1}{2})^n u(n)$

- (d) Determine whether the corresponding system is linear or non-linear y(t) = t x(t).
- (e) Define Parsavel's theorem.
- (f) Determine Nyquist rate for the signal:

$$x(t) = \sin c (200 t)$$

- (g) Explain group delay and phase delay.
- (h) Write short note on white noise.

SECTION-B

- 2. Attempt any two parts of the following: $2 \times 6 = 12$
 - (a) Determine whether the unit step function is energy signal or power signal.
 - (b) Find the convolution of the two sequences:

$$x(n) = \begin{cases} 0 & , & n < -5 \\ \left(\frac{1}{2}\right)^{n}, & n \ge -5 \end{cases} \text{ and } n(n) = \begin{cases} 0 & , & n < 3 \\ \left(\frac{1}{3}\right)^{n}, & n \ge 3 \end{cases}$$

he LTI impulse

tem

(c) Find the Fourier transform of the signum function x (t) = sgn (t):

$$sgn(t) = \begin{cases} -1, & t < 0 \\ 0, & t = 0 \\ 1, & t > 0 \end{cases}$$

(d) Find and sketch the auto correlation function $R_{xx}(\tau)$ for $x(t) = e^{-at} u(t)$, a > 0.

SECTION-C

Note: Attempt all questions. Attempt any two parts from each questions. $5\times8=40$

3. (a) Find the even and odd components of the signal:

$$x(t) = e^{-2t} \cos(t)$$

(b) Determine whether the corresponding system is causal:

$$y(t) = \sin x(t)$$

(c) Explain the properties of continuous-time unit impulse function.

- 4. (a) Suppose the unit impulse response of an LTI system is a unit ramp h (n) = r (n) = n u (n). Compute the response of this system to a unit step input x (n) = u (n).
 - (b) Explain BIBO stability in a system.
 - (c) Prove the following convolution integral:

$$x(t)*u(t) = \int_{-\infty}^{t} x(\tau) d\tau$$

5. (a) Find the CTFT of:

$$x(t) = e^{-at}, a > 0$$

(b) Determine the signal x (n) for the following given discrete time Fourier transorm:

$$x(e^{jw}) = e^{-jxw}$$
 for $w_c \le w \le w_c$

- (c) Explain in detail various sampling techniques.
- 6. (a) Explain energy spectral density in detail.
 - (b) State the properties of crosscorrelation function.
 - (c) Explain different types of noises.